These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31647628)

  • 1. Intrinsic Thermal Desorption in a 3D Printed Multifunctional Composite CO
    Thompson JF; Bellerjeau C; Marinick G; Osio-Norgaard J; Evans A; Carry P; Street RA; Petit C; Whiting GL
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43337-43343. PubMed ID: 31647628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-Printed Zeolite Monoliths for CO
    Thakkar H; Eastman S; Hajari A; Rownaghi AA; Knox JC; Rezaei F
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27753-27761. PubMed ID: 27658639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium Silicate as Low-Temperature Binder in 3D-Printed Porous Structures for CO
    Sutens B; De Vos Y; Verougstraete B; Denayer JFM; Rombouts M
    ACS Omega; 2023 Jan; 8(4):4116-4126. PubMed ID: 36743005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabricating Mechanically Robust Binder-Free Structured Zeolites by 3D Printing Coupled with Zeolite Soldering: A Superior Configuration for CO
    Wang S; Bai P; Sun M; Liu W; Li D; Wu W; Yan W; Shang J; Yu J
    Adv Sci (Weinh); 2019 Sep; 6(17):1901317. PubMed ID: 31508293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyethylenimine-Modified Zeolite 13X for CO
    Karka S; Kodukula S; Nandury SV; Pal U
    ACS Omega; 2019 Oct; 4(15):16441-16449. PubMed ID: 31616822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-Demand Programming of Liquid Metal-Composite Microstructures through Direct Ink Write 3D Printing.
    Haake A; Tutika R; Schloer GM; Bartlett MD; Markvicka EJ
    Adv Mater; 2022 May; 34(20):e2200182. PubMed ID: 35353948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Process Parameters on the Resistivity of 3D Printed Electrically Conductive Structures.
    Dembek K; Podsiadły B; Słoma M
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct 3D Printing of Hybrid Nanofiber-Based Nanocomposites for Highly Conductive and Shape Memory Applications.
    Wei H; Cauchy X; Navas IO; Abderrafai Y; Chizari K; Sundararaj U; Liu Y; Leng J; Therriault D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24523-24532. PubMed ID: 31187627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile Molecular Silver Ink Platform for Printed Flexible Electronics.
    Kell AJ; Paquet C; Mozenson O; Djavani-Tabrizi I; Deore B; Liu X; Lopinski GP; James R; Hettak K; Shaker J; Momciu A; Ferrigno J; Ferrand O; Hu JX; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2017 May; 9(20):17226-17237. PubMed ID: 28466636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver Ink Formulations for Sinter-free Printing of Conductive Films.
    Black K; Singh J; Mehta D; Sung S; Sutcliffe CJ; Chalker PR
    Sci Rep; 2016 Feb; 6():20814. PubMed ID: 26857286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetraethylenepentamine embedded zeolite A for carbon dioxide adsorption.
    Kim YK; Mo YH; Lee J; You HS; Yi CK; Park YC; Park SE
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2703-7. PubMed ID: 23763147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanically Coherent Zeolite 13X/Chitosan Aerogel Beads for Effective CO
    Luzzi E; Aprea P; Salzano de Luna M; Caputo D; Filippone G
    ACS Appl Mater Interfaces; 2021 May; 13(17):20728-20734. PubMed ID: 33900721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Inkjet Printing and Infrared Sintering of Silver Nanoparticles using a Swathe-by-Swathe and Layer-by-Layer Approach for 3-Dimensional Structures.
    Vaithilingam J; Simonelli M; Saleh E; Senin N; Wildman RD; Hague RJ; Leach RK; Tuck CJ
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6560-6570. PubMed ID: 28094997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite.
    Purna Chandra Rao G; Satyaveni S; Ramesh A; Seshaiah K; Murthy KS; Choudary NV
    J Environ Manage; 2006 Nov; 81(3):265-72. PubMed ID: 16580120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance and Lightweight Thermal Management Devices by 3D Printing and Assembly of Continuous Carbon Nanotube Sheets.
    Nguyen N; Zhang S; Oluwalowo A; Park JG; Yao K; Liang R
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27171-27177. PubMed ID: 30020763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Cost Passive Sampling Device with Integrated Porous Membrane Produced Using Multimaterial 3D Printing.
    Kalsoom U; Hasan CK; Tedone L; Desire C; Li F; Breadmore MC; Nesterenko PN; Paull B
    Anal Chem; 2018 Oct; 90(20):12081-12089. PubMed ID: 30222326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-Printed Self-Folding Electronics.
    Sundaram S; Kim DS; Baldo MA; Hayward RC; Matusik W
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32290-32298. PubMed ID: 28825288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical Porous Zeolite Structures for Pressure Swing Adsorption Applications.
    Besser B; Tajiri HA; Mikolajczyk G; Möllmer J; Schumacher TC; Odenbach S; Gläser R; Kroll S; Rezwan K
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3277-86. PubMed ID: 26760054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO2 adsorption-desorption performance of mesoporous zirconium hydroxide with robust water durability.
    Kamimura Y; Endo A
    Phys Chem Chem Phys; 2016 Jan; 18(4):2699-709. PubMed ID: 26726006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.