These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 31647815)

  • 1. Robust sound event detection in bioacoustic sensor networks.
    Lostanlen V; Salamon J; Farnsworth A; Kelling S; Bello JP
    PLoS One; 2019; 14(10):e0214168. PubMed ID: 31647815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards the Automatic Classification of Avian Flight Calls for Bioacoustic Monitoring.
    Salamon J; Bello JP; Farnsworth A; Robbins M; Keen S; Klinck H; Kelling S
    PLoS One; 2016; 11(11):e0166866. PubMed ID: 27880836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac anomaly detection considering an additive noise and convolutional distortion model of heart sound recordings.
    Azam FB; Ansari MI; Nuhash SSK; McLane I; Hasan T
    Artif Intell Med; 2022 Nov; 133():102417. PubMed ID: 36328670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Echolocation calls of free-flying Himalayan swiftlets (Aerodramus brevirostris)].
    Wang B; Ma JZ; Chen Y; Tan LJ; Liu Q; Shen QQ; Liao QY; Zhang LB
    Dongwuxue Yanjiu; 2013 Feb; 34(1):8-13. PubMed ID: 23389972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioacoustic classification of avian calls from raw sound waveforms with an open-source deep learning architecture.
    Bravo Sanchez FJ; Hossain MR; English NB; Moore ST
    Sci Rep; 2021 Aug; 11(1):15733. PubMed ID: 34344970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BioCPPNet: automatic bioacoustic source separation with deep neural networks.
    Bermant PC
    Sci Rep; 2021 Dec; 11(1):23502. PubMed ID: 34873197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resource-Efficient Pet Dog Sound Events Classification Using LSTM-FCN Based on Time-Series Data.
    Kim Y; Sa J; Chung Y; Park D; Lee S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attention-Based Joint Training of Noise Suppression and Sound Event Detection for Noise-Robust Classification.
    Son JY; Chang JH
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convolutional Recurrent Neural Network-Based Event Detection in Tunnels Using Multiple Microphones.
    Kim NK; Jeon KM; Kim HK
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31208007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recording animal vocalizations from a UAV: bat echolocation during roost re-entry.
    Kloepper LN; Kinniry M
    Sci Rep; 2018 May; 8(1):7779. PubMed ID: 29773821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PROTAX-Sound: A probabilistic framework for automated animal sound identification.
    de Camargo UM; Somervuo P; Ovaskainen O
    PLoS One; 2017; 12(9):e0184048. PubMed ID: 28863178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing recurrent convolutional neural networks for large scale bird species classification.
    Gupta G; Kshirsagar M; Zhong M; Gholami S; Ferres JL
    Sci Rep; 2021 Aug; 11(1):17085. PubMed ID: 34429468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach.
    Briggs F; Lakshminarayanan B; Neal L; Fern XZ; Raich R; Hadley SJ; Hadley AS; Betts MG
    J Acoust Soc Am; 2012 Jun; 131(6):4640-50. PubMed ID: 22712937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pitch- and spectral-based dynamic time warping methods for comparing field recordings of harmonic avian vocalizations.
    Meliza CD; Keen SC; Rubenstein DR
    J Acoust Soc Am; 2013 Aug; 134(2):1407-15. PubMed ID: 23927136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated identification of field-recorded songs of four British grasshoppers using bioacoustic signal recognition.
    Chesmore ED; Ohya E
    Bull Entomol Res; 2004 Aug; 94(4):319-30. PubMed ID: 15301697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated detection of broadband clicks of freshwater fish using spectro-temporal features.
    Kottege N; Jurdak R; Kroon F; Jones D
    J Acoust Soc Am; 2015 May; 137(5):2502-11. PubMed ID: 25994683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of automated bioacoustic recorders to replace human wildlife surveys: an example using nightjars.
    Zwart MC; Baker A; McGowan PJ; Whittingham MJ
    PLoS One; 2014; 9(7):e102770. PubMed ID: 25029035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-based automated detection of echolocation calls using the link detector.
    Skowronski MD; Fenton MB
    J Acoust Soc Am; 2008 Jul; 124(1):328-36. PubMed ID: 18646980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional neural network for detecting odontocete echolocation clicks.
    Luo W; Yang W; Zhang Y
    J Acoust Soc Am; 2019 Jan; 145(1):EL7. PubMed ID: 30710948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the analysis of data augmentation methods for spectral imaged based heart sound classification using convolutional neural networks.
    Zhou G; Chen Y; Chien C
    BMC Med Inform Decis Mak; 2022 Aug; 22(1):226. PubMed ID: 36038901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.