These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31647840)

  • 21. Lentisone, a new phytotoxic anthraquinone produced by Ascochyta lentis, the causal agent of Ascochyta blight in Lens culinaris.
    Andolfi A; Cimmino A; Villegas-Fernández AM; Tuzi A; Santini A; Melck D; Rubiales D; Evidente A
    J Agric Food Chem; 2013 Jul; 61(30):7301-8. PubMed ID: 23837870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel
    Dadu RHR; Ford R; Sambasivam P; Gupta D
    Front Plant Sci; 2017; 8():1038. PubMed ID: 28659965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ascochyta rabiei: A threat to global chickpea production.
    Singh R; Kumar K; Purayannur S; Chen W; Verma PK
    Mol Plant Pathol; 2022 Sep; 23(9):1241-1261. PubMed ID: 35778851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reference genome assembly for Australian Ascochyta lentis isolate Al4.
    Lee RC; Farfan-Caceres L; Debler JW; Williams AH; Syme RA; Henares BM
    G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33604672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Agrobacterium tumefaciens-mediated transformation of the causative agent of Valsa canker of apple tree Valsa mali var. mali.
    Hu Y; Dai Q; Liu Y; Yang Z; Song N; Gao X; Voegele RT; Kang Z; Huang L
    Curr Microbiol; 2014 Jun; 68(6):769-76. PubMed ID: 24554343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. IGS Minisatellites Useful for Race Differentiation in Colletotrichum lentis and a Likely Site of Small RNA Synthesis Affecting Pathogenicity.
    Durkin J; Bissett J; Pahlavani M; Mooney B; Buchwaldt L
    PLoS One; 2015; 10(9):e0137398. PubMed ID: 26340001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient gene knockout in the maize pathogen Setosphaeria turcica using Agrobacterium tumefaciens-mediated transformation.
    Xue C; Wu D; Condon BJ; Bi Q; Wang W; Turgeon BG
    Phytopathology; 2013 Jun; 103(6):641-7. PubMed ID: 23384859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Agrobacterium-mediated transformation of the ascomycete mushroom Morchella importuna using polyubiquitin and glyceraldehyde-3-phosphate dehydrogenase promoter-based binary vectors.
    Lv S; Chen X; Mou C; Dai S; Bian Y; Kang H
    World J Microbiol Biotechnol; 2018 Sep; 34(10):148. PubMed ID: 30218324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agrobacterium-mediated gene transfer and enhanced green fluorescent protein visualization in the mycorrhizal ascomycete Tuber borchii: a first step towards truffle genetics.
    Grimaldi B; de Raaf MA; Filetici P; Ottonello S; Ballario P
    Curr Genet; 2005 Jul; 48(1):69-74. PubMed ID: 15868150
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of Lens culinaris defense genes responsive to the anthracnose pathogen Colletotrichum truncatum.
    Bhadauria V; Bett KE; Zhou T; Vandenberg A; Wei Y; Banniza S
    BMC Genet; 2013 Apr; 14():31. PubMed ID: 23631759
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactive Gene Expression Patterns of Susceptible and Resistant
    Cao Z; Kapoor K; Li L; Banniza S
    Front Microbiol; 2020; 11():1259. PubMed ID: 32670221
    [No Abstract]   [Full Text] [Related]  

  • 32. Agrobacterium tumefaciens-mediated transformation of Coniella granati.
    Yuan H; Hou H; Huang T; Zhou Z; Tu H; Wang L
    J Microbiol Methods; 2021 Mar; 182():106149. PubMed ID: 33493491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GFP-aided confocal laser scanning microscopy can monitor Agrobacterium tumefaciens cell morphology and gene expression associated with infection.
    Li L; Li Y; Lim TM; Pan SQ
    FEMS Microbiol Lett; 1999 Oct; 179(1):141-6. PubMed ID: 10481098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Agrobacterium tumefaciens-mediated transformation of Nigrospora sp. isolated from switchgrass leaves and antagonistic toward plant pathogens.
    Dutta S; Houdinet G; NandaKafle G; Kafle A; Hawkes CV; Garcia K
    J Microbiol Methods; 2023 Dec; 215():106849. PubMed ID: 37907117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduction in solanapyrone phytotoxin production by Ascochyta rabiei transformed with Agrobacterium tumefaciens.
    Mogensen EG; Challen MP; Strange RN
    FEMS Microbiol Lett; 2006 Feb; 255(2):255-61. PubMed ID: 16448503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Agrobacterium tumefaciens-mediated transformation of the soybean pathogen Phomopsis longicolla.
    Li S; Ridenour JB; Kim H; Hirsch RL; Rupe JC; Bluhm BH
    J Microbiol Methods; 2013 Mar; 92(3):244-5. PubMed ID: 23305924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Agroinfiltration for transient gene expression and characterisation of fungal pathogen effectors in cool-season grain legume hosts.
    Debler JW; Henares BM; Lee RC
    Plant Cell Rep; 2021 May; 40(5):805-818. PubMed ID: 33811500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Labeling of
    Rodríguez-Pires S; Espeso EA; Baró-Montel N; Torres R; Melgarejo P; De Cal A
    Genes (Basel); 2019 Dec; 10(12):. PubMed ID: 31835779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeted and random genetic modification of the black Sigatoka pathogen Pseudocercospora fijiensis by Agrobacterium tumefaciens-mediated transformation.
    Díaz-Trujillo C; Kobayashi AK; Souza M; Chong P; Meijer HJG; Arango Isaza RE; Kema GHJ
    J Microbiol Methods; 2018 May; 148():127-137. PubMed ID: 29654806
    [No Abstract]   [Full Text] [Related]  

  • 40. Ascochyta fabae and A. lentis: Host Specificity, Teleomorphs (Didymella), Hybrid Analysis, and Taxonomic Status.
    Kaiser WJ; Wang BC; Rogers JD
    Plant Dis; 1997 Jul; 81(7):809-816. PubMed ID: 30861899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.