These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 31647869)
1. Microscopic Picture of the Solvent Reorganization During Electron Transfer to Flavin in Water. Kılıç M; Ensing B J Phys Chem B; 2019 Nov; 123(46):9751-9761. PubMed ID: 31647869 [TBL] [Abstract][Full Text] [Related]
2. First and Second One-Electron Reduction of Lumiflavin in Water-A First Principles Molecular Dynamics Study. Kılıç M; Ensing B J Chem Theory Comput; 2013 Sep; 9(9):3889-99. PubMed ID: 26592384 [TBL] [Abstract][Full Text] [Related]
3. Combined quantum mechanical and molecular mechanical simulations of one- and two-electron reduction potentials of flavin cofactor in water, medium-chain acyl-CoA dehydrogenase, and cholesterol oxidase. Bhattacharyya S; Stankovich MT; Truhlar DG; Gao J J Phys Chem A; 2007 Jul; 111(26):5729-42. PubMed ID: 17567113 [TBL] [Abstract][Full Text] [Related]
4. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase. Glover WJ; Larsen RE; Schwartz BJ J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282 [TBL] [Abstract][Full Text] [Related]
5. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study. Koch DM; Peslherbe GH J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959 [TBL] [Abstract][Full Text] [Related]
6. Role of the Molecular Environment in Flavoprotein Color and Redox Tuning: QM Cluster versus QM/MM Modeling. Udvarhelyi A; Olivucci M; Domratcheva T J Chem Theory Comput; 2015 Aug; 11(8):3878-94. PubMed ID: 26574469 [TBL] [Abstract][Full Text] [Related]
7. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations. Schwörer M; Lorenzen K; Mathias G; Tavan P J Chem Phys; 2015 Mar; 142(10):104108. PubMed ID: 25770527 [TBL] [Abstract][Full Text] [Related]
8. Nonadiabatic QM/MM simulations of fast charge transfer in Escherichia coli DNA photolyase. Woiczikowski PB; Steinbrecher T; Kubař T; Elstner M J Phys Chem B; 2011 Aug; 115(32):9846-63. PubMed ID: 21793510 [TBL] [Abstract][Full Text] [Related]
9. Hybrid density functional-molecular mechanics calculations for core-electron binding energies of glycine in water solution. Niskanen J; Arul Murugan N; Rinkevicius Z; Vahtras O; Li C; Monti S; Carravetta V; Agren H Phys Chem Chem Phys; 2013 Jan; 15(1):244-54. PubMed ID: 23160171 [TBL] [Abstract][Full Text] [Related]
10. Explicit solvent simulations of the aqueous oxidation potential and reorganization energy for neutral molecules: gas phase, linear solvent response, and non-linear response contributions. Guerard JJ; Tentscher PR; Seijo M; Samuel Arey J Phys Chem Chem Phys; 2015 Jun; 17(22):14811-26. PubMed ID: 25978135 [TBL] [Abstract][Full Text] [Related]
11. Solvent reorganization in electron and ion transfer reactions near a smooth electrified surface: a molecular dynamics study. Hartnig C; Koper MT J Am Chem Soc; 2003 Aug; 125(32):9840-5. PubMed ID: 12904051 [TBL] [Abstract][Full Text] [Related]
12. QM/MM calculation of solvent effects on absorption spectra of guanine. Parac M; Doerr M; Marian CM; Thiel W J Comput Chem; 2010 Jan; 31(1):90-106. PubMed ID: 19412906 [TBL] [Abstract][Full Text] [Related]
13. Computation of the free energy change associated with one-electron reduction of coenzyme immersed in water: a novel approach within the framework of the quantum mechanical/molecular mechanical method combined with the theory of energy representation. Takahashi H; Ohno H; Kishi R; Nakano M; Matubayasi N J Chem Phys; 2008 Nov; 129(20):205103. PubMed ID: 19045881 [TBL] [Abstract][Full Text] [Related]
14. Solvent effects on the properties of hyperbranched polythiophenes. Torras J; Zanuy D; Aradilla D; Alemán C Phys Chem Chem Phys; 2016 Sep; 18(35):24610-9. PubMed ID: 27541726 [TBL] [Abstract][Full Text] [Related]
15. Ergodicity-Breaking in Thermal Biological Electron Transfer? Cytochrome C Revisited. Jiang X; Futera Z; Blumberger J J Phys Chem B; 2019 Sep; 123(35):7588-7598. PubMed ID: 31405279 [TBL] [Abstract][Full Text] [Related]
16. IR spectra of flavins in solution: DFT/MM description of redox effects. Rieff B; Bauer S; Mathias G; Tavan P J Phys Chem B; 2011 Mar; 115(9):2117-23. PubMed ID: 21309580 [TBL] [Abstract][Full Text] [Related]
17. Simulation of solution phase electron transfer in a compact donor-acceptor dyad. Kowalczyk T; Wang LP; Van Voorhis T J Phys Chem B; 2011 Oct; 115(42):12135-44. PubMed ID: 21961889 [TBL] [Abstract][Full Text] [Related]
18. Solvent reorganization energy of electron-transfer reactions in polar solvents. Matyushov DV J Chem Phys; 2004 Apr; 120(16):7532-56. PubMed ID: 15267667 [TBL] [Abstract][Full Text] [Related]
19. Atomic Level Anisotropy in the Electrostatic Modeling of Lone Pairs for a Polarizable Force Field Based on the Classical Drude Oscillator. Harder E; Anisimov VM; Vorobyov IV; Lopes PE; Noskov SY; MacKerell AD; Roux B J Chem Theory Comput; 2006 Nov; 2(6):1587-97. PubMed ID: 26627029 [TBL] [Abstract][Full Text] [Related]
20. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols. Riccardi D; Schaefer P; Cui Q J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]