BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31647953)

  • 1. Considerations on Protein Stability During Freezing and Its Impact on the Freeze-Drying Cycle: A Design Space Approach.
    Arsiccio A; Giorsello P; Marenco L; Pisano R
    J Pharm Sci; 2020 Jan; 109(1):464-475. PubMed ID: 31647953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model-based approach for the rational design of the freeze-thawing of a protein-based formulation.
    Arsiccio A; Marenco L; Pisano R
    Pharm Dev Technol; 2020 Sep; 25(7):823-831. PubMed ID: 32367756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.
    Fang R; Tanaka K; Mudhivarthi V; Bogner RH; Pikal MJ
    J Pharm Sci; 2018 Mar; 107(3):824-830. PubMed ID: 29074380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the Quality by Design Approach to the Freezing Step of Freeze-Drying: Building the Design Space.
    Arsiccio A; Pisano R
    J Pharm Sci; 2018 Jun; 107(6):1586-1596. PubMed ID: 29432761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the individual contributions of ice formation and freeze-concentration on isothermal stability of lactate dehydrogenase during freezing.
    Bhatnagar BS; Pikal MJ; Bogner RH
    J Pharm Sci; 2008 Feb; 97(2):798-814. PubMed ID: 17506511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of Freezing and Freeze-Drying in Pharmaceutical Formulations.
    Izutsu KI
    Adv Exp Med Biol; 2018; 1081():371-383. PubMed ID: 30288720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of drying stresses on proteins during lyophilization: differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer.
    Luthra S; Obert JP; Kalonia DS; Pikal MJ
    J Pharm Sci; 2007 Jan; 96(1):61-70. PubMed ID: 17031859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protection of a model protein, lactate dehydrogenase by encapsulation in liposome.
    Nema S; Avis KE
    PDA J Pharm Sci Technol; 1996; 50(4):213-8. PubMed ID: 8810835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions.
    Cao E; Chen Y; Cui Z; Foster PR
    Biotechnol Bioeng; 2003 Jun; 82(6):684-90. PubMed ID: 12673768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a laboratory-scale container for freezing protein solutions with detailed evaluation of a freezing process simulation.
    Roessl U; Jajcevic D; Leitgeb S; Khinast JG; Nidetzky B
    J Pharm Sci; 2014 Feb; 103(2):417-26. PubMed ID: 24338205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing the Optimal Formulation for Biopharmaceuticals: A New Approach Combining Molecular Dynamics and Experiments.
    Arsiccio A; Paladini A; Pattarino F; Pisano R
    J Pharm Sci; 2019 Jan; 108(1):431-438. PubMed ID: 30222976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of critical process and formulation parameters affecting in-process stability of lactate dehydrogenase during the secondary drying stage of lyophilization: a mini freeze dryer study.
    Luthra S; Obert JP; Kalonia DS; Pikal MJ
    J Pharm Sci; 2007 Sep; 96(9):2242-50. PubMed ID: 17621675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maintenance of quaternary structure in the frozen state stabilizes lactate dehydrogenase during freeze-drying.
    Anchordoquy TJ; Izutsu KI; Randolph TW; Carpenter JF
    Arch Biochem Biophys; 2001 Jun; 390(1):35-41. PubMed ID: 11368512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of partial unfolding of proteins at the ice/freeze-concentrate interface by infrared microscopy.
    Schwegman JJ; Carpenter JF; Nail SL
    J Pharm Sci; 2009 Sep; 98(9):3239-46. PubMed ID: 19544369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale Freeze-Thaw of Protein Solutions: Study of the Relative Contributions of Freeze-Concentration and Ice Surface Area on Stability of Lactate Dehydrogenase.
    Minatovicz B; Sansare S; Mehta T; Bogner RH; Chaudhuri B
    J Pharm Sci; 2023 Feb; 112(2):482-491. PubMed ID: 36162492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Importance of Understanding the Freezing Step and Its Impact on Freeze-Drying Process Performance.
    Assegehegn G; Brito-de la Fuente E; Franco JM; Gallegos C
    J Pharm Sci; 2019 Apr; 108(4):1378-1395. PubMed ID: 30529167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of lactate dehydrogenase following freeze thawing and vacuum-drying in the presence of trehalose and borate.
    Miller DP; Anderson RE; de Pablo JJ
    Pharm Res; 1998 Aug; 15(8):1215-21. PubMed ID: 9706052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants.
    Chang BS; Kendrick BS; Carpenter JF
    J Pharm Sci; 1996 Dec; 85(12):1325-30. PubMed ID: 8961147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Ice-Water Interface and Protein Stability: A Review.
    Arsiccio A; Pisano R
    J Pharm Sci; 2020 Jul; 109(7):2116-2130. PubMed ID: 32240686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.