BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31648016)

  • 1. A compression behavior classification system of pharmaceutical powders for accelerating direct compression tablet formulation design.
    Dai S; Xu B; Zhang Z; Yu J; Wang F; Shi X; Qiao Y
    Int J Pharm; 2019 Dec; 572():118742. PubMed ID: 31648016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A methodological evaluation and predictive in silico investigation into the multi-functionality of arginine in directly compressed tablets.
    ElShaer A; Kaialy W; Akhtar N; Iyire A; Hussain T; Alany R; Mohammed AR
    Eur J Pharm Biopharm; 2015 Oct; 96():272-81. PubMed ID: 26255158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of multivariate methods to compression behavior evaluation of directly compressible materials.
    Haware RV; Tho I; Bauer-Brandl A
    Eur J Pharm Biopharm; 2009 May; 72(1):148-55. PubMed ID: 19084596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A material-sparing method for assessment of powder deformation characteristics using data collected during a single compression-decompression cycle.
    Katz JM; Roopwani R; Buckner IS
    J Pharm Sci; 2013 Oct; 102(10):3687-93. PubMed ID: 23897398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression, Part 2: Tableting Properties.
    Chaheen M; Bataille B; Yassine A; Belamie E; Sharkawi T
    J Pharm Sci; 2019 Oct; 108(10):3319-3328. PubMed ID: 31145923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction.
    Tye CK; Sun CC; Amidon GE
    J Pharm Sci; 2005 Mar; 94(3):465-72. PubMed ID: 15696587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A protocol for the classification of powder compression characteristics.
    Nordström J; Klevan I; Alderborn G
    Eur J Pharm Biopharm; 2012 Jan; 80(1):209-16. PubMed ID: 21946474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model to simultaneously evaluate the compressibility and compactibility of a powder based on the compression ratio.
    Yu Y; Zhao L; Lin X; Wang Y; Feng Y
    Int J Pharm; 2020 Mar; 577():119023. PubMed ID: 31935469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A material-sparing method for simultaneous determination of true density and powder compaction properties--aspartame as an example.
    Sun CC
    Int J Pharm; 2006 Dec; 326(1-2):94-9. PubMed ID: 16926076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic development of a high dosage formulation to enable direct compression of a poorly flowing API: A case study.
    Schaller BE; Moroney KM; Castro-Dominguez B; Cronin P; Belen-Girona J; Ruane P; Croker DM; Walker GM
    Int J Pharm; 2019 Jul; 566():615-630. PubMed ID: 31158454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariate data analysis to evaluate commonly used compression descriptors.
    Berkenkemper S; Klinken S; Kleinebudde P
    Int J Pharm; 2023 Apr; 637():122890. PubMed ID: 36990170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the tensile strength of compacted multi-component mixtures of pharmaceutical powders.
    Wu CY; Best SM; Bentham AC; Hancock BC; Bonfield W
    Pharm Res; 2006 Aug; 23(8):1898-905. PubMed ID: 16850273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures.
    Hadžović E; Betz G; Hadžidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2011 Sep; 416(1):97-103. PubMed ID: 21704142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Air Entrapment in Tableting: An Approximate Solution.
    Zavaliangos A; Katz JM; Daurio D; Johnson M; Pirjanian A; Alvarez-Nunez F
    J Pharm Sci; 2017 Dec; 106(12):3604-3612. PubMed ID: 28919383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tabletability and compactibility of
    Persson AS; Alderborn G
    Pharm Dev Technol; 2023 Jul; 28(6):509-519. PubMed ID: 37310086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of degree of methoxylation and particle size on compression properties and compactibility of pectin powders.
    Salbu L; Bauer-Brandl A; Alderborn G; Tho I
    Pharm Dev Technol; 2012; 17(3):333-43. PubMed ID: 21142830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression.
    Hirschberg C; Sun CC; Rantanen J
    J Pharm Biomed Anal; 2016 Sep; 128():462-468. PubMed ID: 27368089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous modeling prediction of three key quality attributes of tablets by powder physical properties.
    Jin C; Zhao L; Feng Y; Hong Y; Shen L; Lin X
    Int J Pharm; 2022 Nov; 628():122344. PubMed ID: 36341919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance.
    Rojas J; Buckner I; Kumar V
    Drug Dev Ind Pharm; 2012 Oct; 38(10):1159-70. PubMed ID: 22966909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a Material Library to Understand the Change of Tabletability by High Shear Wet Granulation.
    Wang Y; Cao J; Zhao X; Liang Z; Qiao Y; Luo G; Xu B
    Pharmaceutics; 2022 Nov; 14(12):. PubMed ID: 36559125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.