BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 31648290)

  • 1. Co-opting the fermentation pathway for tombusvirus replication: Compartmentalization of cellular metabolic pathways for rapid ATP generation.
    Lin W; Liu Y; Molho M; Zhang S; Wang L; Xie L; Nagy PD
    PLoS Pathog; 2019 Oct; 15(10):e1008092. PubMed ID: 31648290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-opted Cellular Sac1 Lipid Phosphatase and PI(4)P Phosphoinositide Are Key Host Factors during the Biogenesis of the Tombusvirus Replication Compartment.
    Sasvari Z; Lin W; Inaba JI; Xu K; Kovalev N; Nagy PD
    J Virol; 2020 Jun; 94(12):. PubMed ID: 32269127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of Tomato Bushy Stunt Virus RNA-Dependent RNA Polymerase by Cellular Heat Shock Protein 70 Is Enhanced by Phospholipids In Vitro.
    Pogany J; Nagy PD
    J Virol; 2015 May; 89(10):5714-23. PubMed ID: 25762742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tombusvirus RNA replication depends on the TOR pathway in yeast and plants.
    Inaba JI; Nagy PD
    Virology; 2018 Jun; 519():207-222. PubMed ID: 29734044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-opting ATP-generating glycolytic enzyme PGK1 phosphoglycerate kinase facilitates the assembly of viral replicase complexes.
    Prasanth KR; Chuang C; Nagy PD
    PLoS Pathog; 2017 Oct; 13(10):e1006689. PubMed ID: 29059239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Glycolytic Pyruvate Kinase Is Recruited Directly into the Viral Replicase Complex to Generate ATP for RNA Synthesis.
    Chuang C; Prasanth KR; Nagy PD
    Cell Host Microbe; 2017 Nov; 22(5):639-652.e7. PubMed ID: 29107644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly-hub function of ER-localized SNARE proteins in biogenesis of tombusvirus replication compartment.
    Sasvari Z; Kovalev N; Gonzalez PA; Xu K; Nagy PD
    PLoS Pathog; 2018 May; 14(5):e1007028. PubMed ID: 29746582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The retromer is co-opted to deliver lipid enzymes for the biogenesis of lipid-enriched tombusviral replication organelles.
    Feng Z; Inaba JI; Nagy PD
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33376201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The centromeric histone CenH3 is recruited into the tombusvirus replication organelles.
    Gonzalez PA; Nagy PD
    PLoS Pathog; 2022 Jun; 18(6):e1010653. PubMed ID: 35767596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Viral RNA and Co-opted Cellular ESCRT-I and ESCRT-III Factors in Formation of Tombusvirus Spherules Harboring the Tombusvirus Replicase.
    Kovalev N; de Castro Martín IF; Pogany J; Barajas D; Pathak K; Risco C; Nagy PD
    J Virol; 2016 Jan; 90(7):3611-26. PubMed ID: 26792735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The proteasomal Rpn11 metalloprotease suppresses tombusvirus RNA recombination and promotes viral replication via facilitating assembly of the viral replicase complex.
    Prasanth KR; Barajas D; Nagy PD
    J Virol; 2015 Mar; 89(5):2750-63. PubMed ID: 25540361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tombusviruses Target a Major Crossroad in the Endocytic and Recycling Pathways via Co-opting Rab7 Small GTPase.
    Feng Z; Inaba JI; Nagy PD
    J Virol; 2021 Oct; 95(21):e0107621. PubMed ID: 34406861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of co-opted ESCRT proteins and lipid factors in protection of tombusviral double-stranded RNA replication intermediate against reconstituted RNAi in yeast.
    Kovalev N; Inaba JI; Li Z; Nagy PD
    PLoS Pathog; 2017 Jul; 13(7):e1006520. PubMed ID: 28759634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taking over Cellular Energy-Metabolism for TBSV Replication: The High ATP Requirement of an RNA Virus within the Viral Replication Organelle.
    Nagy PD; Lin W
    Viruses; 2020 Jan; 12(1):. PubMed ID: 31947719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic interplay between the co-opted Fis1 mitochondrial fission protein and membrane contact site proteins in supporting tombusvirus replication.
    Lin W; Feng Z; Prasanth KR; Liu Y; Nagy PD
    PLoS Pathog; 2021 Mar; 17(3):e1009423. PubMed ID: 33725015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of an RNA Virus Replicase in Artificial Giant Unilamellar Vesicles Supports Full Replication and Provides Protection for the Double-Stranded RNA Replication Intermediate.
    Kovalev N; Pogany J; Nagy PD
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32641477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel viral strategy for host factor recruitment: The co-opted proteasomal Rpn11 protein interaction hub in cooperation with subverted actin filaments are targeted to deliver cytosolic host factors for viral replication.
    Molho M; Lin W; Nagy PD
    PLoS Pathog; 2021 Jun; 17(6):e1009680. PubMed ID: 34161398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-opting of nonATP-generating glycolytic enzymes for TBSV replication.
    Molho M; Chuang C; Nagy PD
    Virology; 2021 Jul; 559():15-29. PubMed ID: 33799077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blocking tombusvirus replication through the antiviral functions of DDX17-like RH30 DEAD-box helicase.
    Wu CY; Nagy PD
    PLoS Pathog; 2019 May; 15(5):e1007771. PubMed ID: 31136641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel mechanism of regulation of tomato bushy stunt virus replication by cellular WW-domain proteins.
    Barajas D; Kovalev N; Qin J; Nagy PD
    J Virol; 2015 Feb; 89(4):2064-79. PubMed ID: 25473045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.