These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 31648727)
1. Japanese Encephalitis Virus infection induces inflammation of swine testis through RIG-I-NF-ĸB signaling pathway. Zheng B; Wang X; Liu Y; Li Y; Long S; Gu C; Ye J; Xie S; Cao S Vet Microbiol; 2019 Nov; 238():108430. PubMed ID: 31648727 [TBL] [Abstract][Full Text] [Related]
2. Roles of TLR3 and RIG-I in mediating the inflammatory response in mouse microglia following Japanese encephalitis virus infection. Jiang R; Ye J; Zhu B; Song Y; Chen H; Cao S J Immunol Res; 2014; 2014():787023. PubMed ID: 25101306 [TBL] [Abstract][Full Text] [Related]
3. p21-Activated Kinase 4 Signaling Promotes Japanese Encephalitis Virus-Mediated Inflammation in Astrocytes. He W; Zhao Z; Anees A; Li Y; Ashraf U; Chen Z; Song Y; Chen H; Cao S; Ye J Front Cell Infect Microbiol; 2017; 7():271. PubMed ID: 28680855 [TBL] [Abstract][Full Text] [Related]
4. Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-kappaB activation. Chang TH; Liao CL; Lin YL Microbes Infect; 2006 Jan; 8(1):157-71. PubMed ID: 16182584 [TBL] [Abstract][Full Text] [Related]
5. Antiviral and anti-inflammatory activity of novel belladonna formulation against Japanese encephalitis virus via inhibition of p65 nuclear translocation and TNF-α mediated NF-kB signaling. Saxena SK; Kumar S; Maurya VK; Nayak D; Kaushik S; Manchanda RK; Gadugu S Biotechnol Genet Eng Rev; 2023 Oct; 39(2):937-959. PubMed ID: 36718919 [TBL] [Abstract][Full Text] [Related]
6. Targeting of the Nasal Mucosa by Japanese Encephalitis Virus for Non-Vector-Borne Transmission. García-Nicolás O; Braun RO; Milona P; Lewandowska M; Dijkman R; Alves MP; Summerfield A J Virol; 2018 Dec; 92(24):. PubMed ID: 30282716 [TBL] [Abstract][Full Text] [Related]
7. Japanese encephalitis virus induces apoptosis by activating the RIG-1 signaling pathway. Gao M; Liu Z; Guo X; Zhang J; Cheng G; Hu X; Zhang W; Gu C Arch Virol; 2023 May; 168(6):169. PubMed ID: 37233865 [TBL] [Abstract][Full Text] [Related]
8. MicroRNA-19b-3p Modulates Japanese Encephalitis Virus-Mediated Inflammation via Targeting RNF11. Ashraf U; Zhu B; Ye J; Wan S; Nie Y; Chen Z; Cui M; Wang C; Duan X; Zhang H; Chen H; Cao S J Virol; 2016 May; 90(9):4780-4795. PubMed ID: 26937036 [TBL] [Abstract][Full Text] [Related]
9. Development and application of a monoclonal-antibody-based blocking ELISA for detection of Japanese encephalitis virus NS1 antibodies in swine. Zhou D; Pei C; Yang K; Ye J; Wan S; Li Q; Zhang L; Chen H; Cao S; Song Y Arch Virol; 2019 Jun; 164(6):1535-1542. PubMed ID: 30900070 [TBL] [Abstract][Full Text] [Related]
10. Pathogenic and Genotypic Characterization of a Japanese Encephalitis Virus Isolate Associated with Reproductive Failure in an Indian Pig Herd. Desingu PA; Ray PK; Patel BH; Singh R; Singh RK; Saikumar G PLoS One; 2016; 11(2):e0147611. PubMed ID: 26895440 [TBL] [Abstract][Full Text] [Related]
11. Japanese encephalitis virus NS1 and NS1' protein disrupts the blood-brain barrier through macrophage migration inhibitory factor-mediated autophagy. Zhang L; Nan X; Zhou D; Wang X; Zhu S; Li Q; Jia F; Zhu B; Si Y; Cao S; Ye J J Virol; 2024 May; 98(5):e0011624. PubMed ID: 38591880 [TBL] [Abstract][Full Text] [Related]
12. Shedding of Japanese Encephalitis Virus in Oral Fluid of Infected Swine. Lyons AC; Huang YS; Park SL; Ayers VB; Hettenbach SM; Higgs S; McVey DS; Noronha L; Hsu WW; Vanlandingham DL Vector Borne Zoonotic Dis; 2018 Sep; 18(9):469-474. PubMed ID: 29742002 [TBL] [Abstract][Full Text] [Related]
13. Survey of Japanese encephalitis virus in pigs and wild boars on Ishigaki and Iriomote Islands in Okinawa, Japan. Nidaira M; Kyan H; Taira K; Okano S; Oshiro T; Kato T; Kudo N; Azama Y; Mahoe Y; Kudaka J; Tamanaha K; Takasaki T Epidemiol Infect; 2014 Apr; 142(4):856-60. PubMed ID: 23830350 [TBL] [Abstract][Full Text] [Related]
14. Japanese Encephalitis Virus exploits microRNA-155 to suppress the non-canonical NF-κB pathway in human microglial cells. Rastogi M; Singh SK Biochim Biophys Acta Gene Regul Mech; 2020 Nov; 1863(11):194639. PubMed ID: 32987149 [TBL] [Abstract][Full Text] [Related]
15. Serological and molecular epidemiology of Japanese encephalitis virus infections in swine herds in China, 2006-2012. Chai C; Wang Q; Cao S; Zhao Q; Wen Y; Huang X; Wen X; Yan Q; Ma X; Wu R J Vet Sci; 2018 Jan; 19(1):151-155. PubMed ID: 28693301 [TBL] [Abstract][Full Text] [Related]
16. Epidemiological investigation of swine Japanese encephalitis virus based on RT-RAA detection method. Nie M; Zhou Y; Li F; Deng H; Zhao M; Huang Y; Jiang C; Sun X; Xu Z; Zhu L Sci Rep; 2022 Jun; 12(1):9392. PubMed ID: 35672440 [TBL] [Abstract][Full Text] [Related]
17. Development of a convenient immunochromatographic strip for the diagnosis of infection with Japanese encephalitis virus in swine. Li Y; Hou L; Ye J; Liu X; Dan H; Jin M; Chen H; Cao S J Virol Methods; 2010 Sep; 168(1-2):51-6. PubMed ID: 20433870 [TBL] [Abstract][Full Text] [Related]
18. Japanese encephalitis virus induces matrix metalloproteinase-9 in rat brain astrocytes via NF-κB signalling dependent on MAPKs and reactive oxygen species. Tung WH; Tsai HW; Lee IT; Hsieh HL; Chen WJ; Chen YL; Yang CM Br J Pharmacol; 2010 Dec; 161(7):1566-83. PubMed ID: 20698853 [TBL] [Abstract][Full Text] [Related]
19. miR-124 attenuates Japanese encephalitis virus replication by targeting DNM2. Yang S; Pei Y; Li X; Zhao S; Zhu M; Zhao A Virol J; 2016 Jun; 13():105. PubMed ID: 27329300 [TBL] [Abstract][Full Text] [Related]
20. Japanese encephalitis virus restricts HMGB1 expression to maintain MAPK pathway activation for viral replication. Xing J; Liang J; Liu S; Huang L; Hu P; Liu L; Liao M; Qi W Vet Microbiol; 2021 Nov; 262():109237. PubMed ID: 34592637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]