These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31649199)

  • 1. Higher-fitness yeast genotypes are less robust to deleterious mutations.
    Johnson MS; Martsul A; Kryazhimskiy S; Desai MM
    Science; 2019 Oct; 366(6464):490-493. PubMed ID: 31649199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational robustness changes during long-term adaptation in laboratory budding yeast populations.
    Johnson MS; Desai MM
    Elife; 2022 Jul; 11():. PubMed ID: 35880743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the Peaks: Fitness Landscapes of the Fittest and the Flattest.
    Franklin J; LaBar T; Adami C
    Artif Life; 2019; 25(3):250-262. PubMed ID: 31397601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombination and mutational robustness in neutral fitness landscapes.
    Klug A; Park SC; Krug J
    PLoS Comput Biol; 2019 Aug; 15(8):e1006884. PubMed ID: 31415555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial evolution. Global epistasis makes adaptation predictable despite sequence-level stochasticity.
    Kryazhimskiy S; Rice DP; Jerison ER; Desai MM
    Science; 2014 Jun; 344(6191):1519-1522. PubMed ID: 24970088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative Epistasis in Experimental RNA Fitness Landscapes.
    Bendixsen DP; Østman B; Hayden EJ
    J Mol Evol; 2017 Dec; 85(5-6):159-168. PubMed ID: 29127445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa.
    MacLean RC; Perron GG; Gardner A
    Genetics; 2010 Dec; 186(4):1345-54. PubMed ID: 20876562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fitness epistasis among 6 biosynthetic loci in the budding yeast Saccharomyces cerevisiae.
    Hall DW; Agan M; Pope SC
    J Hered; 2010; 101 Suppl 1():S75-84. PubMed ID: 20194517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating Mutational Load Is Not Due to Synergistic Epistasis or Mutator Alleles in Mutation Accumulation Lines of Yeast.
    Jasmin JN; Lenormand T
    Genetics; 2016 Feb; 202(2):751-63. PubMed ID: 26596348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The environment affects epistatic interactions to alter the topology of an empirical fitness landscape.
    Flynn KM; Cooper TF; Moore FB; Cooper VS
    PLoS Genet; 2013 Apr; 9(4):e1003426. PubMed ID: 23593024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The consistency of beneficial fitness effects of mutations across diverse genetic backgrounds.
    Pearson VM; Miller CR; Rokyta DR
    PLoS One; 2012; 7(8):e43864. PubMed ID: 22937113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Valley-of-Death: reciprocal sign epistasis constrains adaptive trajectories in a constant, nutrient limiting environment.
    Chiotti KE; Kvitek DJ; Schmidt KH; Koniges G; Schwartz K; Donckels EA; Rosenzweig F; Sherlock G
    Genomics; 2014 Dec; 104(6 Pt A):431-7. PubMed ID: 25449178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Idiosyncratic epistasis creates universals in mutational effects and evolutionary trajectories.
    Lyons DM; Zou Z; Xu H; Zhang J
    Nat Ecol Evol; 2020 Dec; 4(12):1685-1693. PubMed ID: 32895516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The distribution of epistasis on simple fitness landscapes.
    Fraïsse C; Welch JJ
    Biol Lett; 2019 Apr; 15(4):20180881. PubMed ID: 31014191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perspective: Sign epistasis and genetic constraint on evolutionary trajectories.
    Weinreich DM; Watson RA; Chao L
    Evolution; 2005 Jun; 59(6):1165-74. PubMed ID: 16050094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein.
    Bershtein S; Segal M; Bekerman R; Tokuriki N; Tawfik DS
    Nature; 2006 Dec; 444(7121):929-32. PubMed ID: 17122770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolutionarily stable distribution of fitness effects.
    Rice DP; Good BH; Desai MM
    Genetics; 2015 May; 200(1):321-9. PubMed ID: 25762525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative epistasis between beneficial mutations in an evolving bacterial population.
    Khan AI; Dinh DM; Schneider D; Lenski RE; Cooper TF
    Science; 2011 Jun; 332(6034):1193-6. PubMed ID: 21636772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the distribution of fitness effects and adaptive mutational spectra following a single first step towards adaptation.
    Aggeli D; Li Y; Sherlock G
    Nat Commun; 2021 Aug; 12(1):5193. PubMed ID: 34465770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benefit of transferred mutations is better predicted by the fitness of recipients than by their ecological or genetic relatedness.
    Wang Y; Diaz Arenas C; Stoebel DM; Flynn K; Knapp E; Dillon MM; Wünsche A; Hatcher PJ; Moore FB; Cooper VS; Cooper TF
    Proc Natl Acad Sci U S A; 2016 May; 113(18):5047-52. PubMed ID: 27091964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.