BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31649251)

  • 21. Predicting CRISPR/Cas9-Induced Mutations for Precise Genome Editing.
    Molla KA; Yang Y
    Trends Biotechnol; 2020 Feb; 38(2):136-141. PubMed ID: 31526571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategies for Applying Nonhomologous End Joining-Mediated Genome Editing in Prokaryotes.
    Cui Y; Dong H; Ma Y; Zhang D
    ACS Synth Biol; 2019 Oct; 8(10):2194-2202. PubMed ID: 31525995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites.
    Jayavaradhan R; Pillis DM; Goodman M; Zhang F; Zhang Y; Andreassen PR; Malik P
    Nat Commun; 2019 Jun; 10(1):2866. PubMed ID: 31253785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of DNA double-strand break repair as a strategy to improve precise genome editing.
    Ray U; Raghavan SC
    Oncogene; 2020 Oct; 39(41):6393-6405. PubMed ID: 32884115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deploying MMEJ using MENdel in precision gene editing applications for gene therapy and functional genomics.
    Martínez-Gálvez G; Joshi P; Friedberg I; Manduca A; Ekker SC
    Nucleic Acids Res; 2021 Jan; 49(1):67-78. PubMed ID: 33305328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulating DNA Repair Pathways to Improve Precision Genome Engineering.
    Pawelczak KS; Gavande NS; VanderVere-Carozza PS; Turchi JJ
    ACS Chem Biol; 2018 Feb; 13(2):389-396. PubMed ID: 29210569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microhomologies are prevalent at Cas9-induced larger deletions.
    Owens DDG; Caulder A; Frontera V; Harman JR; Allan AJ; Bucakci A; Greder L; Codner GF; Hublitz P; McHugh PJ; Teboul L; de Bruijn MFTR
    Nucleic Acids Res; 2019 Aug; 47(14):7402-7417. PubMed ID: 31127293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks.
    Brinkman EK; Chen T; de Haas M; Holland HA; Akhtar W; van Steensel B
    Mol Cell; 2018 Jun; 70(5):801-813.e6. PubMed ID: 29804829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.
    Zhang WW; Matlashewski G
    mBio; 2015 Jul; 6(4):e00861. PubMed ID: 26199327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized?
    Trimidal SG; Benjamin R; Bae JE; Han MV; Kong E; Singer A; Williams TS; Yang B; Schiller MR
    Bioessays; 2019 Dec; 41(12):e1900126. PubMed ID: 31693213
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia.
    Ye L; Wang J; Tan Y; Beyer AI; Xie F; Muench MO; Kan YW
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10661-5. PubMed ID: 27601644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of gene editing by manipulation of DNA repair mechanisms.
    Danner E; Bashir S; Yumlu S; Wurst W; Wefers B; Kühn R
    Mamm Genome; 2017 Aug; 28(7-8):262-274. PubMed ID: 28374058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining.
    Maruyama T; Dougan SK; Truttmann MC; Bilate AM; Ingram JR; Ploegh HL
    Nat Biotechnol; 2015 May; 33(5):538-42. PubMed ID: 25798939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells.
    Sankaranarayanan K; Taleei R; Rahmanian S; Nikjoo H
    Mutat Res; 2013; 753(2):114-130. PubMed ID: 23948232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient CRISPR/Cas9-based plant genomic fragment deletions by microhomology-mediated end joining.
    Tan J; Zhao Y; Wang B; Hao Y; Wang Y; Li Y; Luo W; Zong W; Li G; Chen S; Ma K; Xie X; Chen L; Liu YG; Zhu Q
    Plant Biotechnol J; 2020 Nov; 18(11):2161-2163. PubMed ID: 32336015
    [No Abstract]   [Full Text] [Related]  

  • 38. CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway.
    Richardson CD; Kazane KR; Feng SJ; Zelin E; Bray NL; Schäfer AJ; Floor SN; Corn JE
    Nat Genet; 2018 Aug; 50(8):1132-1139. PubMed ID: 30054595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient ligase 3-dependent microhomology-mediated end joining repair of DNA double-strand breaks in zebrafish embryos.
    He MD; Zhang FH; Wang HL; Wang HP; Zhu ZY; Sun YH
    Mutat Res; 2015 Oct; 780():86-96. PubMed ID: 26318124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein.
    Ma Y; Chen W; Zhang X; Yu L; Dong W; Pan S; Gao S; Huang X; Zhang L
    RNA Biol; 2016 Jul; 13(7):605-12. PubMed ID: 27163284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.