These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31649261)

  • 1. Specific ion effects at graphitic interfaces.
    Zhan C; Cerón MR; Hawks SA; Otani M; Wood BC; Pham TA; Stadermann M; Campbell PG
    Nat Commun; 2019 Oct; 10(1):4858. PubMed ID: 31649261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes.
    Kalluri RK; Biener MM; Suss ME; Merrill MD; Stadermann M; Santiago JG; Baumann TF; Biener J; Striolo A
    Phys Chem Chem Phys; 2013 Feb; 15(7):2309-20. PubMed ID: 23295944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selectivity of nitrate and chloride ions in microporous carbons: the role of anisotropic hydration and applied potentials.
    Aydin F; Cerón MR; Hawks SA; Oyarzun DI; Zhan C; Pham TA; Stadermann M; Campbell PG
    Nanoscale; 2020 Oct; 12(39):20292-20299. PubMed ID: 33001104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Characterization of Single Layer Graphene/Electrolyte Interface: Effect of Solvent on the Interfacial Capacitance.
    Wu YC; Ye J; Jiang G; Ni K; Shu N; Taberna PL; Zhu Y; Simon P
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13317-13322. PubMed ID: 33555100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Anomalies and Electronic Properties of an Ionic Liquid under Nanoscale Confinement.
    Pham TA; Coulthard RM; Zobel M; Maiti A; Buchsbaum SF; Loeb C; Campbell PG; Plata DL; Wood BC; Fornasiero F; Meshot ER
    J Phys Chem Lett; 2020 Aug; 11(15):6150-6155. PubMed ID: 32645262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gating of Hydrophobic Nanopores with Large Anions.
    Polster JW; Acar ET; Aydin F; Zhan C; Pham TA; Siwy ZS
    ACS Nano; 2020 Apr; 14(4):4306-4315. PubMed ID: 32181640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First principles studies of the interactions between alkali metal elements and oxygen-passivated nanopores in graphene.
    Heath JJ; Kuroda MA
    Phys Chem Chem Phys; 2018 Oct; 20(40):25822-25828. PubMed ID: 30283971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.
    Ivaništšev V; Méndez-Morales T; Lynden-Bell RM; Cabeza O; Gallego LJ; Varela LM; Fedorov MV
    Phys Chem Chem Phys; 2016 Jan; 18(2):1302-10. PubMed ID: 26661060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion-specific effects under confinement: the role of interfacial water.
    Argyris D; Cole DR; Striolo A
    ACS Nano; 2010 Apr; 4(4):2035-42. PubMed ID: 20373748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of ionic aqueous solutions at interfaces: an intrinsic structure analysis.
    Bresme F; Chacón E; Tarazona P; Wynveen A
    J Chem Phys; 2012 Sep; 137(11):114706. PubMed ID: 22998280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water.
    McCaffrey DL; Nguyen SC; Cox SJ; Weller H; Alivisatos AP; Geissler PL; Saykally RJ
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13369-13373. PubMed ID: 28827359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confinement effects on the solvation structure of solvated alkali [correction] metal cations in a single-digit 1T-MoS
    Zhan C; Sun Y; Aydin F; Wang YM; Pham TA
    J Chem Phys; 2021 Apr; 154(16):164706. PubMed ID: 33940836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of confinement on the adsorption behavior of inorganic and organic ions at aqueous-cyclohexane interfaces: a molecular dynamics study.
    Hosseini Anvari M; Choi P
    Phys Chem Chem Phys; 2019 Oct; 21(37):20770-20781. PubMed ID: 31513204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origins and Implications of Interfacial Capacitance Enhancements in C
    Zhan C; Pham TA; Cerón MR; Campbell PG; Vedharathinam V; Otani M; Jiang DE; Biener J; Wood BC; Biener M
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36860-36865. PubMed ID: 30296045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modeling of ions at interfaces: exploring similarities to hydrophobic solvation through the lens of induced aqueous interfacial fluctuations.
    Ou SC; Cui D; Patel S
    Phys Chem Chem Phys; 2016 Nov; 18(44):30357-30365. PubMed ID: 27796380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication: Molecular dynamics simulations of the interfacial structure of alkali metal fluoride solutions.
    Feng H; Zhou J; Lu X; Fichthorn KA
    J Chem Phys; 2010 Aug; 133(6):061103. PubMed ID: 20707554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific Ion Effects of Trivalent Cations on the Structure and Charging State of β-Lactoglobulin Adsorption Layers.
    Richert ME; Gochev GG; Braunschweig B
    Langmuir; 2019 Sep; 35(35):11299-11307. PubMed ID: 31398284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-layer in ionic liquids: paradigm change?
    Kornyshev AA
    J Phys Chem B; 2007 May; 111(20):5545-57. PubMed ID: 17469864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical investigation of adsorption of graphene oxide at an interface between two immiscible electrolyte solutions.
    Qiu H; Jiang T; Wang X; Zhu L; Wang Q; Zhao Y; Ge J; Chen Y
    RSC Adv; 2020 Jul; 10(43):25817-25827. PubMed ID: 35518605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.