BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 3164998)

  • 1. Differential effects of flavonoids as inhibitors of tyrosine protein kinases and serine/threonine protein kinases.
    Hagiwara M; Inoue S; Tanaka T; Nunoki K; Ito M; Hidaka H
    Biochem Pharmacol; 1988 Aug; 37(15):2987-92. PubMed ID: 3164998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatic kinome atlas: An in-depth identification of kinase pathways in liver fibrosis of humans and rodents.
    Creeden JF; Kipp ZA; Xu M; Flight RM; Moseley HNB; Martinez GJ; Lee WH; Alganem K; Imami AS; McMullen MR; Roychowdhury S; Nawabi AM; Hipp JA; Softic S; Weinman SA; McCullumsmith R; Nagy LE; Hinds TD
    Hepatology; 2022 Nov; 76(5):1376-1388. PubMed ID: 35313030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular docking studies of banana flower flavonoids as insulin receptor tyrosine kinase activators as a cure for diabetes mellitus.
    Ganugapati J; Baldwa A; Lalani S
    Bioinformation; 2012; 8(5):216-20. PubMed ID: 22493522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-angiogenic effect of quercetin and its 8-methyl pentamethyl ether derivative in human microvascular endothelial cells.
    Lupo G; Cambria MT; Olivieri M; Rocco C; Caporarello N; Longo A; Zanghì G; Salmeri M; Foti MC; Anfuso CD
    J Cell Mol Med; 2019 Oct; 23(10):6565-6577. PubMed ID: 31369203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Kinase CK2, a Potential Therapeutic Target in Carcinoma Management.
    Lian H; Su M; Zhu Y; Zhou Y; Soomro SH; Fu H
    Asian Pac J Cancer Prev; 2019 Jan; 20(1):23-32. PubMed ID: 30677865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target.
    Chua MM; Ortega CE; Sheikh A; Lee M; Abdul-Rassoul H; Hartshorn KL; Dominguez I
    Pharmaceuticals (Basel); 2017 Jan; 10(1):. PubMed ID: 28134850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytochemicals as Anticancer and Chemopreventive Topoisomerase II Poisons.
    Ketron AC; Osheroff N
    Phytochem Rev; 2014 Mar; 13(1):19-35. PubMed ID: 24678287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anticarcinogenic effect of quercetin by inhibition of insulin-like growth factor (IGF)-1 signaling in mouse skin cancer.
    Jung M; Bu SY; Tak KH; Park JE; Kim E
    Nutr Res Pract; 2013 Dec; 7(6):439-45. PubMed ID: 24353828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs.
    Wright B; Spencer JP; Lovegrove JA; Gibbins JM
    Cardiovasc Res; 2013 Jan; 97(1):13-22. PubMed ID: 23024269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hesperidin, a flavone glycoside, as mediator of neuronal survival.
    Nones J; E Spohr TC; Gomes FC
    Neurochem Res; 2011 Oct; 36(10):1776-84. PubMed ID: 21553255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual effect of quercetin on rat isolated portal vein smooth muscle contractility.
    Chiwororo WD; Ojewole JA
    Cardiovasc J Afr; 2010; 21(3):132-6. PubMed ID: 20532450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible Involvement of Ca Activated K Channels, SK Channel, in the Quercetin-Induced Vasodilatation.
    Nishida S; Satoh H
    Korean J Physiol Pharmacol; 2009 Oct; 13(5):361-5. PubMed ID: 19915698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kaempferol stimulates large conductance Ca2+ -activated K+ (BKCa) channels in human umbilical vein endothelial cells via a cAMP/PKA-dependent pathway.
    Xu YC; Leung GP; Wong PY; Vanhoutte PM; Man RY
    Br J Pharmacol; 2008 Jul; 154(6):1247-53. PubMed ID: 18493242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quercetin augments TRAIL-induced apoptotic death: involvement of the ERK signal transduction pathway.
    Kim YH; Lee DH; Jeong JH; Guo ZS; Lee YJ
    Biochem Pharmacol; 2008 May; 75(10):1946-58. PubMed ID: 18377872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Underlying mechanism of quercetin-induced cell death in human glioma cells.
    Kim EJ; Choi CH; Park JY; Kang SK; Kim YK
    Neurochem Res; 2008 Jun; 33(6):971-9. PubMed ID: 18322795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioflavonoids as poisons of human topoisomerase II alpha and II beta.
    Bandele OJ; Osheroff N
    Biochemistry; 2007 May; 46(20):6097-108. PubMed ID: 17458941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quercetin suppresses proinflammatory cytokines production through MAP kinases andNF-kappaB pathway in lipopolysaccharide-stimulated macrophage.
    Cho SY; Park SJ; Kwon MJ; Jeong TS; Bok SH; Choi WY; Jeong WI; Ryu SY; Do SH; Lee CS; Song JC; Jeong KS
    Mol Cell Biochem; 2003 Jan; 243(1-2):153-60. PubMed ID: 12619901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavones inhibit the hexameric replicative helicase RepA.
    Xu H; Ziegelin G; Schröder W; Frank J; Ayora S; Alonso JC; Lanka E; Saenger W
    Nucleic Acids Res; 2001 Dec; 29(24):5058-66. PubMed ID: 11812837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein.
    Conseil G; Baubichon-Cortay H; Dayan G; Jault JM; Barron D; Di Pietro A
    Proc Natl Acad Sci U S A; 1998 Aug; 95(17):9831-6. PubMed ID: 9707561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of N-acetylglucosaminyltransferase V by protein kinases.
    Ju TZ; Chen HL; Gu JX; Qin H
    Glycoconj J; 1995 Dec; 12(6):767-72. PubMed ID: 8748153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.