BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31650135)

  • 1. Wash-free non-spectroscopic optical immunoassay by controlling retroreflective microparticle movement in a microfluidic chip.
    Kim KR; Chun HJ; Lee KW; Jeong KY; Kim JH; Yoon HC
    Lab Chip; 2019 Dec; 19(23):3931-3942. PubMed ID: 31650135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wash-free operation of smartphone-integrated optical immunosensor using retroreflective microparticles.
    Kim KR; Lee KW; Chun HJ; Lee D; Kim JH; Yoon HC
    Biosens Bioelectron; 2022 Jan; 196():113722. PubMed ID: 34700265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retroreflective Janus Microparticle as a Nonspectroscopic Optical Immunosensing Probe.
    Han YD; Kim HS; Park YM; Chun HJ; Kim JH; Yoon HC
    ACS Appl Mater Interfaces; 2016 May; 8(17):10767-74. PubMed ID: 27079154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonspectroscopic Migratory Cell Monitoring Method Using Retroreflective Janus Microparticles.
    Kim KR; Lee D; Jeong KY; Lee KW; Kim MS; Kim JH; Yoon HC
    ACS Omega; 2020 Sep; 5(38):24790-24798. PubMed ID: 33015497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salmonella Typhimurium Sensing Strategy Based on the Loop-Mediated Isothermal Amplification Using Retroreflective Janus Particle as a Nonspectroscopic Signaling Probe.
    Chun HJ; Kim S; Han YD; Kim KR; Kim JH; Yoon H; Yoon HC
    ACS Sens; 2018 Nov; 3(11):2261-2268. PubMed ID: 30350587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An embedded microretroreflector-based microfluidic immunoassay platform.
    Raja B; Pascente C; Knoop J; Shakarisaz D; Sherlock T; Kemper S; Kourentzi K; Renzi RF; Hatch AV; Olano J; Peng BH; Ruchhoeft P; Willson R
    Lab Chip; 2016 Apr; 16(9):1625-35. PubMed ID: 27025227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-soluble mercury ion sensing based on the thymine-Hg
    Chun HJ; Kim S; Han YD; Kim DW; Kim KR; Kim HS; Kim JH; Yoon HC
    Biosens Bioelectron; 2018 May; 104():138-144. PubMed ID: 29331427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A non-spectroscopic optical biosensor for the detection of pathogenic Salmonella Typhimurium based on a stem-loop DNA probe and retro-reflective signaling.
    Kim DW; Chun HJ; Kim JH; Yoon H; Yoon HC
    Nano Converg; 2019 May; 6(1):16. PubMed ID: 31089914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel and cost-effective method for high-throughput 3D culturing and rhythmic assessment of hiPSC-derived cardiomyocytes using retroreflective Janus microparticles.
    Pham HTM; Nguyen DL; Kim HS; Yang EK; Kim JH; Yoon HC; Park HJ
    Biomater Res; 2023 Aug; 27(1):79. PubMed ID: 37587478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Chip based direct triple antibody immunoassay for monitoring patient comparative response to leukemia treatment.
    İçöz K; Akar Ü; Ünal E
    Biomed Microdevices; 2020 Jul; 22(3):48. PubMed ID: 32661698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A capillary flow-driven microfluidic system for microparticle-labeled immunoassays.
    Khodayari Bavil A; Kim J
    Analyst; 2018 Jul; 143(14):3335-3342. PubMed ID: 29878004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A compact and integrated immunoassay with on-chip dispensing and magnetic particle handling.
    Zirath H; Peham JR; Schnetz G; Coll A; Brandhoff L; Spittler A; Vellekoop MJ; Redl H
    Biomed Microdevices; 2016 Feb; 18(1):16. PubMed ID: 26842948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical High-Performance Lateral Flow Assay Based on Autonomous Microfluidic Replacement on a Film.
    Fuchiwaki Y; Goya K; Tanaka M
    Anal Sci; 2018; 34(1):57-63. PubMed ID: 29321459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping.
    De Coster D; Ottevaere H; Vervaeke M; Van Erps J; Callewaert M; Wuytens P; Simpson SH; Hanna S; De Malsche W; Thienpont H
    Opt Express; 2015 Nov; 23(24):30991-1009. PubMed ID: 26698730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SERS-Based Pump-Free Microfluidic Chip for Highly Sensitive Immunoassay of Prostate-Specific Antigen Biomarkers.
    Gao R; Lv Z; Mao Y; Yu L; Bi X; Xu S; Cui J; Wu Y
    ACS Sens; 2019 Apr; 4(4):938-943. PubMed ID: 30864786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C-reactive protein and interleukin 6 microfluidic immunoassays with on-chip pre-stored reagents and centrifugo-pneumatic liquid control.
    Zhao Y; Czilwik G; Klein V; Mitsakakis K; Zengerle R; Paust N
    Lab Chip; 2017 May; 17(9):1666-1677. PubMed ID: 28426080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D nanomolding for lab-on-a-chip applications.
    Farshchian B; Park S; Choi J; Amirsadeghi A; Lee J; Park S
    Lab Chip; 2012 Nov; 12(22):4764-71. PubMed ID: 22990333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip signal amplification of magnetic bead-based immunoassay by aviating magnetic bead chains.
    Jalal UM; Jin GJ; Eom KS; Kim MH; Shim JS
    Bioelectrochemistry; 2018 Aug; 122():221-226. PubMed ID: 29129601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retroreflection-based optical biosensing: From concept to applications.
    Han YD; Kim KR; Lee KW; Yoon HC
    Biosens Bioelectron; 2022 Jul; 207():114202. PubMed ID: 35358947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA.
    Yu ZT; Guan H; Cheung MK; McHugh WM; Cornell TT; Shanley TP; Kurabayashi K; Fu J
    Sci Rep; 2015 Jun; 5():11339. PubMed ID: 26074253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.