These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31650138)

  • 41. Superhydrophobic activated carbon-coated sponges for separation and absorption.
    Sun H; Li A; Zhu Z; Liang W; Zhao X; La P; Deng W
    ChemSusChem; 2013 Jun; 6(6):1057-62. PubMed ID: 23650204
    [TBL] [Abstract][Full Text] [Related]  

  • 42. EcoFlex Sponge with Ultrahigh Oil Absorption Capacity.
    Lu Z; Song J; Pan K; Meng J; Xin Z; Liu Y; Zhao Z; Gong RH; Li J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20037-20044. PubMed ID: 31071261
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mussel-inspired one-step copolymerization to engineer hierarchically structured surface with superhydrophobic properties for removing oil from water.
    Huang S
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17144-50. PubMed ID: 25198145
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel Magnetically Driven Superhydrophobic Sponges Coated with Asphaltene/Kaolin Nanoparticles for Effective Oil Spill Cleanup.
    Chen Q; Zhang L; Shan Y; Liu Y; Zhao D
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234658
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel fabrication of a robust superhydrophobic PU@ZnO@Fe
    Tran VT; Lee BK
    Sci Rep; 2017 Dec; 7(1):17520. PubMed ID: 29235525
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent.
    Liu Y; Ma J; Wu T; Wang X; Huang G; Liu Y; Qiu H; Li Y; Wang W; Gao J
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10018-26. PubMed ID: 24050505
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation.
    Wu L; Li L; Li B; Zhang J; Wang A
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4936-46. PubMed ID: 25671386
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Porous Carbon Sponge from White-Rot Fungus
    Gong Y; Pan L; Yuan H; Li J; Li X; Chen Q; Yuan Y; Wu X; Yang ST
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676275
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Repeatable oil-water separation with a highly-elastic and tough amino-terminated polydimethylsiloxane-based sponge synthesized using a self-foaming method.
    Mo S; Mei J; Liang Q; Li Z
    Chemosphere; 2021 May; 271():129827. PubMed ID: 33736215
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reduced Graphene Oxide-Doped Porous Thermoplastic Polyurethane Sponges for Highly Efficient Oil/Water Separation.
    Chen X; Zhang J; Chen X; Zhu Y; Liu X
    ACS Omega; 2023 Mar; 8(11):10487-10492. PubMed ID: 36969439
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation of Modified Montmorillonite-Plant Fiber Composite Foam Materials.
    Chen Q; Du X; Chen G
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30704050
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface Wettability of Cellulose Sponges on Effective Oil Uptake.
    Phomrak S; Phisalaphong M; Zhang Newby BM
    ACS Appl Bio Mater; 2022 Jun; 5(6):2622-2632. PubMed ID: 35543617
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modified hydrophobic and oleophilic polyurethane sponge for oil absorption with MIL-53.
    Riyal I; Joshi G; Sharma H; Dwivedi C
    Environ Res; 2023 Nov; 237(Pt 2):116982. PubMed ID: 37657607
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery.
    Periasamy AP; Wu WP; Ravindranath R; Roy P; Lin GL; Chang HT
    Mar Pollut Bull; 2017 Jan; 114(2):888-895. PubMed ID: 27863883
    [TBL] [Abstract][Full Text] [Related]  

  • 55. One-step fabrication of highly stable, superhydrophobic composites from controllable and low-cost PMHS/TEOS sols for efficient oil cleanup.
    Guo P; Zhai S; Xiao Z; An Q
    J Colloid Interface Sci; 2015 May; 446():155-62. PubMed ID: 25666456
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrophobic modification on surface of chitin sponges for highly effective separation of oil.
    Duan B; Gao H; He M; Zhang L
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19933-42. PubMed ID: 25347002
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wood Sponge Reinforced with Polyvinyl Alcohol for Sustainable Oil-Water Separation.
    Cai Y; Wu Y; Yang F; Gan J; Wang Y; Zhang J
    ACS Omega; 2021 May; 6(19):12866-12876. PubMed ID: 34056438
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Superhydrophobic/Superoleophilic and Reinforced Ethyl Cellulose Sponges for Oil/Water Separation: Synergistic Strategies of Cross-linking, Carbon Nanotube Composite, and Nanosilica Modification.
    Lu Y; Yuan W
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29167-29176. PubMed ID: 28796484
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of hydrophobic polyvinyl-alcohol formaldehyde sponges as absorbents for oil spill.
    Pan Y; Shi K; Peng C; Wang W; Liu Z; Ji X
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8651-9. PubMed ID: 24797603
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Indolocarbazole based polymer coated super adsorbent polyurethane sponges for oil/organic solvent removal.
    Vintu M; Unnikrishnan G
    J Environ Manage; 2019 Oct; 248():109344. PubMed ID: 31466186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.