These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31650177)

  • 21. The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep.
    Marzano C; Ferrara M; Curcio G; De Gennaro L
    J Sleep Res; 2010 Jun; 19(2):260-8. PubMed ID: 19845849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electroencephalographic sleep macrostructure and sleep spindles in early infancy.
    Ventura S; Mathieson SR; O'Toole JM; Livingstone V; Ryan MA; Boylan GB
    Sleep; 2022 Jan; 45(1):. PubMed ID: 34755881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Local Differences in Computational Sleep Depth Parameters in Healthy School-aged Children.
    Himanen SL; Huupponen E; Jussila M; Lapinlampi AM; Saarenpää-Heikkilä O
    Clin EEG Neurosci; 2017 Nov; 48(6):393-402. PubMed ID: 28679286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Age-dependent changes in sleep EEG topography.
    Landolt HP; Borbély AA
    Clin Neurophysiol; 2001 Feb; 112(2):369-77. PubMed ID: 11165543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High Resolution Topography of Age-Related Changes in Non-Rapid Eye Movement Sleep Electroencephalography.
    Sprecher KE; Riedner BA; Smith RF; Tononi G; Davidson RJ; Benca RM
    PLoS One; 2016; 11(2):e0149770. PubMed ID: 26901503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative analysis of discontinuous EEG in premature and full-term newborns during quiet sleep.
    Eiselt M; Schendel M; Witte H; Dörschel J; Curzi-Dascalova L; D'Allest AM; Zwiener U
    Electroencephalogr Clin Neurophysiol; 1997 Nov; 103(5):528-34. PubMed ID: 9402883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-REM sleep EEG power distribution in fatigue and sleepiness.
    Neu D; Mairesse O; Verbanck P; Linkowski P; Le Bon O
    J Psychosom Res; 2014 Apr; 76(4):286-91. PubMed ID: 24630178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NREM sleep alpha and sigma activity in Parkinson's disease: evidence for conflicting electrophysiological activity?
    Margis R; Schönwald SV; Carvalho DZ; Gerhardt GJ; Rieder CR
    Clin Neurophysiol; 2015 May; 126(5):951-8. PubMed ID: 25227218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental characteristics of temporal sharp transients in the EEG of normal preterm and term newborns.
    Nunes ML; Gameleira FT; Oliveira AJ; da Costa JC
    Arq Neuropsiquiatr; 2003 Sep; 61(3A):574-9. PubMed ID: 14513160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatio-temporal organization of EEG in premature infants and full-term new-borns.
    Joseph JP; Lesevre N; Dreyfus-Brisac C
    Electroencephalogr Clin Neurophysiol; 1976 Feb; 40(2):153-68. PubMed ID: 55356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Spectral power density and coherence in sleep EEG in patients with acquired immunodeficiency syndrome].
    Terstegge K; Henkes H; Kubicki S; Scholz G; Hansen ML; Ruf B; Müller R
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1989 Dec; 20(4):302-9. PubMed ID: 2514090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sleep EEG provides evidence that cortical changes persist into late adolescence.
    Tarokh L; Van Reen E; LeBourgeois M; Seifer R; Carskadon MA
    Sleep; 2011 Oct; 34(10):1385-93. PubMed ID: 21966070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discrimination of sleep states using continuous cerebral bedside monitoring (amplitude-integrated electroencephalography) compared to polysomnography in infants.
    Bennet L; Fyfe KL; Yiallourou SR; Merk H; Wong FY; Horne RS
    Acta Paediatr; 2016 Dec; 105(12):e582-e587. PubMed ID: 27659907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EEG bands during wakefulness, slow-wave and paradoxical sleep as a result of principal component analysis in man.
    Corsi-Cabrera M; Guevara MA; Del Río-Portilla Y; Arce C; Villanueva-Hernández Y
    Sleep; 2000 Sep; 23(6):738-44. PubMed ID: 11007440
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Slow (0.7-2 Hz) and fast (2-4 Hz) delta components are differently correlated to theta, alpha and beta frequency bands during NREM sleep.
    Benoit O; Daurat A; Prado J
    Clin Neurophysiol; 2000 Dec; 111(12):2103-6. PubMed ID: 11090758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Frequency and state specific hemispheric asymmetries in the human sleep EEG.
    Roth C; Achermann P; Borbély AA
    Neurosci Lett; 1999 Aug; 271(3):139-42. PubMed ID: 10507688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonlinear dynamical analysis of the neonatal EEG time series: the relationship between sleep state and complexity.
    Janjarasjitt S; Scher MS; Loparo KA
    Clin Neurophysiol; 2008 Aug; 119(8):1812-1823. PubMed ID: 18486543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antero-posterior EEG changes during the wakefulness-sleep transition.
    De Gennaro L; Ferrara M; Curcio G; Cristiani R
    Clin Neurophysiol; 2001 Oct; 112(10):1901-11. PubMed ID: 11595150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the development of sleep states in the first weeks of life.
    Wielek T; Del Giudice R; Lang A; Wislowska M; Ott P; Schabus M
    PLoS One; 2019; 14(10):e0224521. PubMed ID: 31661522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectral power and coherence analysis of sleep EEG in AIDS patients: decrease in interhemispheric coherence.
    Terstegge K; Henkes H; Scheuler W; Hansen ML; Ruf B; Kubicki S
    Sleep; 1993 Feb; 16(2):137-45. PubMed ID: 8446833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.