BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31650227)

  • 1. Degradation Mechanism of 4-Chlorobiphenyl by Consortium of Pseudomonas sp. Strain CB-3 and Comamonas sp. Strain CD-2.
    Xing Z; Hu T; Xiang Y; Qi P; Huang X
    Curr Microbiol; 2020 Jan; 77(1):15-23. PubMed ID: 31650227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of anaerobic reductive dechlorination products of Aroclor 1242 by four aerobic bacteria.
    Maltseva OV; Tsoi TV; Quensen JF; Fukuda M; Tiedje JM
    Biodegradation; 1999; 10(5):363-71. PubMed ID: 10870552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphingobium fuliginis HC3: a novel and robust isolated biphenyl- and polychlorinated biphenyls-degrading bacterium without dead-end intermediates accumulation.
    Hu J; Qian M; Zhang Q; Cui J; Yu C; Su X; Shen C; Hashmi MZ; Shi J
    PLoS One; 2015; 10(4):e0122740. PubMed ID: 25875180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of biphenyl and polychlorinated biphenyl-degrading bacteria and their degradation pathway.
    Chang YC; Takada K; Choi D; Toyama T; Sawada K; Kikuchi S
    Appl Biochem Biotechnol; 2013 May; 170(2):381-98. PubMed ID: 23529656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of chlorobenzoates on the utilisation of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate-mineralising hybrid bacterial strains.
    Stratford J; Wright MA; Reineke W; Mokross H; Havel J; Knowles CJ; Robinson GK
    Arch Microbiol; 1996 Mar; 165(3):213-8. PubMed ID: 8599540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Rhodococcus recombinant strain for degradation of products from anaerobic dechlorination of PCBs.
    Rodrigues JL; Maltseva OV; Tsoi TV; Helton RR; Quensen JF; Fukuda M; Tiedje JM
    Environ Sci Technol; 2001 Feb; 35(4):663-8. PubMed ID: 11349275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of biphenyl and 2-chlorobiphenyl by a Pseudomonas sp. KM-04 isolated from PCBs-contaminated coal mine soil.
    Nam IH; Chon CM; Jung KY; Kim JG
    Bull Environ Contam Toxicol; 2014 Jul; 93(1):89-94. PubMed ID: 24797535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel biotransformations of 4-chlorobiphenyl by a Pseudomonas sp.
    Barton MR; Crawford RL
    Appl Environ Microbiol; 1988 Feb; 54(2):594-5. PubMed ID: 3355144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of chlorobenzoate degraders isolated from polychlorinated biphenyl-contaminated soil and sediment in the Czech Republic.
    Pavlû L; Vosáhlová J; Klierová H; Prouza M; Demnerová K; Brenner V
    J Appl Microbiol; 1999 Sep; 87(3):381-6. PubMed ID: 10540240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced mineralization of polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading bacteria.
    Hickey WJ; Searles DB; Focht DD
    Appl Environ Microbiol; 1993 Apr; 59(4):1194-200. PubMed ID: 8476293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity of biphenyl degraders in a chlorobenzene polluted aquifer.
    Abraham WR; Wenderoth DF; Glässer W
    Chemosphere; 2005 Jan; 58(4):529-33. PubMed ID: 15620745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of commensal relationships on the spatial structure of a surface-attached microbial consortium.
    Nielsen AT; Tolker-Nielsen T; Barken KB; Molin S
    Environ Microbiol; 2000 Feb; 2(1):59-68. PubMed ID: 11243263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detoxification of hydroxylated polychlorobiphenyls by Sphingomonas sp. strain N-9 isolated from forest soil.
    Mizukami-Murata S; Sakakibara F; Fujita K; Fukuda M; Kuramata M; Takagi K
    Chemosphere; 2016 Dec; 165():173-182. PubMed ID: 27649311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic exchange in soil between introduced chlorobenzoate degraders and indigenous biphenyl degraders.
    Focht DD; Searles DB; Koh SC
    Appl Environ Microbiol; 1996 Oct; 62(10):3910-3. PubMed ID: 8837452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant compounds improved PCB-degradation by Burkholderia xenovorans strain LB400.
    Ponce BL; Latorre VK; González M; Seeger M
    Enzyme Microb Technol; 2011 Dec; 49(6-7):509-16. PubMed ID: 22142725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel bacterium that utilizes monochlorobiphenyls and 4-chlorobenzoate as growth substrates.
    Kim S; Picardal FW
    FEMS Microbiol Lett; 2000 Apr; 185(2):225-9. PubMed ID: 10754252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorobenzoate-degrading bacteria in similar pristine soils exhibit different community structures and population dynamics in response to anthropogenic 2-, 3-, and 4-chlorobenzoate levels.
    Gentry TJ; Wang G; Rensing C; Pepper IL
    Microb Ecol; 2004 Jul; 48(1):90-102. PubMed ID: 15085300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Halopicolinic acids, novel products arising through the degradation of chloro- and bromo-biphenyl by Sphingomonas paucimobilis BPSI-3.
    Davison AD; Karuso P; Jardine DR; Veal DA
    Can J Microbiol; 1996 Jan; 42(1):66-71. PubMed ID: 8595598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A meta cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166.
    Arensdorf JJ; Focht DD
    Appl Environ Microbiol; 1995 Feb; 61(2):443-7. PubMed ID: 7574580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alginate beads as a storage, delivery and containment system for genetically modified PCB degrader and PCB biosensor derivatives of Pseudomonas fluorescens F113.
    Power B; Liu X; Germaine KJ; Ryan D; Brazil D; Dowling DN
    J Appl Microbiol; 2011 May; 110(5):1351-8. PubMed ID: 21395945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.