These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3868 related articles for article (PubMed ID: 31650265)
1. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265 [TBL] [Abstract][Full Text] [Related]
2. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Liang S; Tang F; Huang X; Yang K; Zhong T; Hu R; Liu S; Yuan X; Zhang Y Eur Radiol; 2019 Apr; 29(4):1961-1967. PubMed ID: 30302589 [TBL] [Abstract][Full Text] [Related]
3. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
4. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
5. Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images. Naser MA; Deen MJ Comput Biol Med; 2020 Jun; 121():103758. PubMed ID: 32568668 [TBL] [Abstract][Full Text] [Related]
6. Nasopharyngeal carcinoma segmentation based on enhanced convolutional neural networks using multi-modal metric learning. Ma Z; Zhou S; Wu X; Zhang H; Yan W; Sun S; Zhou J Phys Med Biol; 2019 Jan; 64(2):025005. PubMed ID: 30524024 [TBL] [Abstract][Full Text] [Related]
7. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Tong N; Gou S; Yang S; Cao M; Sheng K Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188 [TBL] [Abstract][Full Text] [Related]
8. Deep learning-based multimodal segmentation of oropharyngeal squamous cell carcinoma on CT and MRI using self-configuring nnU-Net. Choi Y; Bang J; Kim SY; Seo M; Jang J Eur Radiol; 2024 Aug; 34(8):5389-5400. PubMed ID: 38243135 [TBL] [Abstract][Full Text] [Related]
9. Automated glioma grading on conventional MRI images using deep convolutional neural networks. Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478 [TBL] [Abstract][Full Text] [Related]
10. Machine Segmentation of Pelvic Anatomy in MRI-Assisted Radiosurgery (MARS) for Prostate Cancer Brachytherapy. Sanders JW; Lewis GD; Thames HD; Kudchadker RJ; Venkatesan AM; Bruno TL; Ma J; Pagel MD; Frank SJ Int J Radiat Oncol Biol Phys; 2020 Dec; 108(5):1292-1303. PubMed ID: 32634543 [TBL] [Abstract][Full Text] [Related]
11. Assessment of multi-modal magnetic resonance imaging for glioma based on a deep learning reconstruction approach with the denoising method. Sun J; Xu S; Guo Y; Ding J; Zhuo Z; Zhou D; Liu Y Acta Radiol; 2024 Oct; 65(10):1257-1264. PubMed ID: 39219486 [TBL] [Abstract][Full Text] [Related]
12. Brain tumor segmentation using holistically nested neural networks in MRI images. Zhuge Y; Krauze AV; Ning H; Cheng JY; Arora BC; Camphausen K; Miller RW Med Phys; 2017 Oct; 44(10):5234-5243. PubMed ID: 28736864 [TBL] [Abstract][Full Text] [Related]
13. Machine-assisted interpolation algorithm for semi-automated segmentation of highly deformable organs. Luximon DC; Abdulkadir Y; Chow PE; Morris ED; Lamb JM Med Phys; 2022 Jan; 49(1):41-51. PubMed ID: 34783027 [TBL] [Abstract][Full Text] [Related]
14. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Ibragimov B; Xing L Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307 [TBL] [Abstract][Full Text] [Related]
15. Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets. Jiang J; Hu YC; Tyagi N; Zhang P; Rimner A; Deasy JO; Veeraraghavan H Med Phys; 2019 Oct; 46(10):4392-4404. PubMed ID: 31274206 [TBL] [Abstract][Full Text] [Related]
16. MR-based treatment planning in radiation therapy using a deep learning approach. Liu F; Yadav P; Baschnagel AM; McMillan AB J Appl Clin Med Phys; 2019 Mar; 20(3):105-114. PubMed ID: 30861275 [TBL] [Abstract][Full Text] [Related]
17. Cross-modality deep learning: Contouring of MRI data from annotated CT data only. Kieselmann JP; Fuller CD; Gurney-Champion OJ; Oelfke U Med Phys; 2021 Apr; 48(4):1673-1684. PubMed ID: 33251619 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques. Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning and Multi-Sensor Fusion for Glioma Classification Using Multistream 2D Convolutional Networks. Ge C; Gu IY; Jakola AS; Yang J Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5894-5897. PubMed ID: 30441677 [TBL] [Abstract][Full Text] [Related]
20. Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI. Laukamp KR; Thiele F; Shakirin G; Zopfs D; Faymonville A; Timmer M; Maintz D; Perkuhn M; Borggrefe J Eur Radiol; 2019 Jan; 29(1):124-132. PubMed ID: 29943184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]