These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 31650340)

  • 21. Formation of superhydrophobic surfaces by biomimetic silicification and fluorination.
    Cho WK; Kang SM; Kim DJ; Yang SH; Choi IS
    Langmuir; 2006 Dec; 22(26):11208-13. PubMed ID: 17154605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superhydrophobic Copper Surface Textured by Laser for Delayed Icing Phenomenon.
    Li J; Zhou Y; Wang W; Xu C; Ren L
    Langmuir; 2020 Feb; 36(5):1075-1082. PubMed ID: 31958954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabricating the Superhydrophobic Nickel and Improving Its Antifriction Performance by the Laser Surface Texturing.
    Huang J; Wei S; Zhang L; Yang Y; Yang S; Shen Z
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30974728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation.
    Fadeeva E; Truong VK; Stiesch M; Chichkov BN; Crawford RJ; Wang J; Ivanova EP
    Langmuir; 2011 Mar; 27(6):3012-9. PubMed ID: 21288031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic-Responsive Superhydrophobic Surface of Magnetorheological Elastomers Mimicking from Lotus Leaves to Rose Petals.
    Chen S; Zhu M; Zhang Y; Dong S; Wang X
    Langmuir; 2021 Feb; 37(7):2312-2321. PubMed ID: 33544610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of Stretchable Superamphiphobic Surfaces with Deformation-Induced Rearrangeable Structures.
    Zhou X; Liu J; Liu W; Steffen W; Butt HJ
    Adv Mater; 2022 Mar; 34(10):e2107901. PubMed ID: 34989448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Achieving Superhydrophobicity of Zr-Based Metallic Glass Surfaces with Tunable Adhesion by Nanosecond Laser Ablation and Annealing.
    Cui M; Huang H; Wang C; Zhang L; Yan J
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39567-39576. PubMed ID: 35983650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser.
    Baldacchini T; Carey JE; Zhou M; Mazur E
    Langmuir; 2006 May; 22(11):4917-9. PubMed ID: 16700574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetically Responsive Superhydrophobic Surface: In Situ Reversible Switching of Water Droplet Wettability and Adhesion for Droplet Manipulation.
    Yang C; Wu L; Li G
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20150-20158. PubMed ID: 29806941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) - new design principles for biomimetic materials.
    Schulte AJ; Droste DM; Koch K; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():228-36. PubMed ID: 21977435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superhydrophobic Blood-Repellent Surfaces.
    Jokinen V; Kankuri E; Hoshian S; Franssila S; Ras RHA
    Adv Mater; 2018 Jun; 30(24):e1705104. PubMed ID: 29465772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oil-Infused Superhydrophobic Silicone Material for Low Ice Adhesion with Long-Term Infusion Stability.
    Yeong YH; Wang C; Wynne KJ; Gupta MC
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):32050-32059. PubMed ID: 27797475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly Stretchable Superhydrophobic Composite Coating Based on Self-Adaptive Deformation of Hierarchical Structures.
    Hu X; Tang C; He Z; Shao H; Xu K; Mei J; Lau WM
    Small; 2017 May; 13(19):. PubMed ID: 28306203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of a Flexible Superhydrophobic Surface and Its Wetting Mechanism Based on Fractal Theory.
    Jiang G; Hu J; Chen L
    Langmuir; 2020 Jul; 36(29):8435-8443. PubMed ID: 32640799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Testing the performance of superhydrophobic aluminum surfaces.
    Ruiz-Cabello FJM; Ibáñez-Ibáñez PF; Gómez-Lopera JF; Martínez-Aroza J; Cabrerizo-Vílchez M; Rodríguez-Valverde MA
    J Colloid Interface Sci; 2017 Dec; 508():129-136. PubMed ID: 28822862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stretchable superhydrophobic fluororubber fabricated by transferring mesh microstructures.
    Wang J; Zhang Y; He Q
    Soft Matter; 2023 Feb; 19(8):1560-1568. PubMed ID: 36748355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling the Wetting Properties of Superhydrophobic Titanium Surface Fabricated by UV Nanosecond-Pulsed Laser and Heat Treatment.
    Dinh TH; Ngo CV; Chun DM
    Nanomaterials (Basel); 2018 Sep; 8(10):. PubMed ID: 30262760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes.
    Li J; Jing Z; Zha F; Yang Y; Wang Q; Lei Z
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8868-77. PubMed ID: 24807195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Femtosecond laser preparing patternable liquid-metal-repellent surface for flexible electronics.
    Zhang J; Zhang K; Yong J; Yang Q; He Y; Zhang C; Hou X; Chen F
    J Colloid Interface Sci; 2020 Oct; 578():146-154. PubMed ID: 32526520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How droplets move on laser-structured surfaces: Determination of droplet adhesion forces on nano- and microstructured surfaces.
    Schnell G; Polley C; Thomas R; Bartling S; Wagner J; Springer A; Seitz H
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):951-964. PubMed ID: 36327711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.