These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31650546)

  • 41. Total phenolic content and antioxidant activity of myrtle (Myrtus communis) extracts.
    Amensour M; Sendra E; Abrini J; Bouhdid S; Pérez-Alvarez JA; Fernández-López J
    Nat Prod Commun; 2009 Jun; 4(6):819-24. PubMed ID: 19634329
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proanthocyanidin profile and ORAC values of Manitoba berries, chokecherries, and seabuckthorn.
    Hosseinian FS; Li W; Hydamaka AW; Tsopmo A; Lowry L; Friel J; Beta T
    J Agric Food Chem; 2007 Aug; 55(17):6970-6. PubMed ID: 17661492
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro antioxidant activity and solar protection factor of blackberry and raspberry extracts in topical formulation.
    Cefali LC; Franco JG; Nicolini GF; Ataide JA; Mazzola PG
    J Cosmet Dermatol; 2019 Apr; 18(2):539-544. PubMed ID: 30565377
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multidimensional comparative analysis of phenolic compounds in organic juices with high antioxidant capacity.
    Nowak D; Gośliński M; Szwengiel A
    J Sci Food Agric; 2017 Jun; 97(8):2657-2663. PubMed ID: 27739084
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antioxidant capacity of infant fruit beverages: influence of storage and in vitro gastrointestinal digestion.
    Perales S; Barberá R; Lagarda MJ; Farré R
    Nutr Hosp; 2008; 23(6):547-53. PubMed ID: 19132262
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 5-hydroxymethyl-2-furfural and derivatives formed during acid hydrolysis of conjugated and bound phenolics in plant foods and the effects on phenolic content and antioxidant capacity.
    Chen PX; Tang Y; Zhang B; Liu R; Marcone MF; Li X; Tsao R
    J Agric Food Chem; 2014 May; 62(20):4754-61. PubMed ID: 24796380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phenolic compounds, antioxidant activity, antiproliferative activity and bioaccessibility of Sea buckthorn (Hippophaë rhamnoides L.) berries as affected by in vitro digestion.
    Guo R; Chang X; Guo X; Brennan CS; Li T; Fu X; Liu RH
    Food Funct; 2017 Nov; 8(11):4229-4240. PubMed ID: 29046908
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polyphenols and antioxidant capacity of vegetables under fresh and frozen conditions.
    Ninfali P; Bacchiocca M
    J Agric Food Chem; 2003 Apr; 51(8):2222-6. PubMed ID: 12670160
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phytochemical compositions of extract from peel of hawthorn fruit, and its antioxidant capacity, cell growth inhibition, and acetylcholinesterase inhibitory activity.
    Wu P; Li F; Zhang J; Yang B; Ji Z; Chen W
    BMC Complement Altern Med; 2017 Mar; 17(1):151. PubMed ID: 28284186
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of Polyphenol Anthocyanin-Enriched Extracts of Blackberry, Black Raspberry, Blueberry, Cranberry, Red Raspberry, and Strawberry for Free Radical Scavenging, Reactive Carbonyl Species Trapping, Anti-Glycation, Anti-β-Amyloid Aggregation, and Microglial Neuroprotective Effects.
    Ma H; Johnson SL; Liu W; DaSilva NA; Meschwitz S; Dain JA; Seeram NP
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29401686
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stability of the potent antioxidant peptide SNAAC identified from Spanish dry-cured ham.
    Gallego M; Mora L; Reig M; Toldrá F
    Food Res Int; 2018 Mar; 105():873-879. PubMed ID: 29433284
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Antioxidant capacity in cranberry is influenced by cultivar and storage temperature.
    Wang SY; Stretch AW
    J Agric Food Chem; 2001 Feb; 49(2):969-74. PubMed ID: 11262058
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cranberry and black chokeberry extracts isolated with pressurized ethanol from defatted by supercritical CO
    Tamkutė L; Jančiukė G; Pukalskienė M; Sarapinienė I; Arvydas Skeberdis V; Rimantas Venskutonis P
    Food Res Int; 2022 Nov; 161():111803. PubMed ID: 36192948
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cellular antioxidant activity of common fruits.
    Wolfe KL; Kang X; He X; Dong M; Zhang Q; Liu RH
    J Agric Food Chem; 2008 Sep; 56(18):8418-26. PubMed ID: 18759450
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antioxidant and antiproliferative activity of chokeberry juice phenolics during in vitro simulated digestion in the presence of food matrix.
    Stanisavljević N; Samardžić J; Janković T; Šavikin K; Mojsin M; Topalović V; Stevanović M
    Food Chem; 2015 May; 175():516-22. PubMed ID: 25577114
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced bioactivity and efficient delivery of quercetin through nanoliposomal encapsulation using rice bran phospholipids.
    Rodriguez EB; Almeda RA; Vidallon MLP; Reyes CT
    J Sci Food Agric; 2019 Mar; 99(4):1980-1989. PubMed ID: 30270448
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antioxidant and cytoprotective activities of extracts prepared from fruit and vegetable wastes and by-products.
    Kabir F; Tow WW; Hamauzu Y; Katayama S; Tanaka S; Nakamura S
    Food Chem; 2015 Jan; 167():358-62. PubMed ID: 25148998
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study.
    Ou B; Huang D; Hampsch-Woodill M; Flanagan JA; Deemer EK
    J Agric Food Chem; 2002 May; 50(11):3122-8. PubMed ID: 12009973
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stability and absorption of anthocyanins from blueberries subjected to a simulated digestion process.
    Liu Y; Zhang D; Wu Y; Wang D; Wei Y; Wu J; Ji B
    Int J Food Sci Nutr; 2014 Jun; 65(4):440-8. PubMed ID: 24393027
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antioxidant properties and polyphenolic compositions of fruits from different European cranberrybush (Viburnum opulus L.) genotypes.
    Kraujalytė V; Venskutonis PR; Pukalskas A; Česonienė L; Daubaras R
    Food Chem; 2013 Dec; 141(4):3695-702. PubMed ID: 23993538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.