These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31651014)

  • 1. Proton irradiation of graphene: insights from atomistic modeling.
    Shi T; Peng Q; Bai Z; Gao F; Jovanovic I
    Nanoscale; 2019 Nov; 11(43):20754-20765. PubMed ID: 31651014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomistic-Scale Simulations of Defect Formation in Graphene under Noble Gas Ion Irradiation.
    Yoon K; Rahnamoun A; Swett JL; Iberi V; Cullen DA; Vlassiouk IV; Belianinov A; Jesse S; Sang X; Ovchinnikova OS; Rondinone AJ; Unocic RR; van Duin AC
    ACS Nano; 2016 Sep; 10(9):8376-84. PubMed ID: 27532882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Influence of Copper Substrates on Irradiation Effects of Graphene: A Molecular Dynamics Study.
    Wang S; Zhang Q; Yin K; Gao B; Zhang S; Wang G; Liu H
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene.
    Zhong JH; Zhang J; Jin X; Liu JY; Li Q; Li MH; Cai W; Wu DY; Zhan D; Ren B
    J Am Chem Soc; 2014 Nov; 136(47):16609-17. PubMed ID: 25350471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoresonator vibrational behaviour analysis of single- and double-layer graphene with atomic vacancy and pinhole defects.
    Makwana M; Patel AM
    J Mol Model; 2023 Apr; 29(5):149. PubMed ID: 37074494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of SiO2 substrate on the irradiation-assisted manipulation of supported graphene: a molecular dynamics study.
    Zhao S; Xue J; Wang Y; Yan S
    Nanotechnology; 2012 Jul; 23(28):285703. PubMed ID: 22728427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles.
    Bai Z; Zhang L; Liu L
    Nanoscale; 2016 Apr; 8(16):8761-72. PubMed ID: 27065115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic Conductance through Graphene: Assessing Its Applicability as a Proton Selective Membrane.
    Chaturvedi P; Vlassiouk IV; Cullen DA; Rondinone AJ; Lavrik NV; Smirnov SN
    ACS Nano; 2019 Oct; 13(10):12109-12119. PubMed ID: 31592639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Molecular Dynamics Study on the Defect Formation and Mechanical Behavior of Molybdenum Disulfide under Irradiation.
    Shi Y; Wang W; Zhou Q; Xia Q; Hua D; Huang Z; Chai L; Wang H; Wang P
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):29453-29465. PubMed ID: 38803999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic study of mono/multi-atomic vacancy defects on the mechanical characterization of boron-doped graphene sheets.
    Setoodeh AR; Badjian H; Jahromi HS
    J Mol Model; 2017 Jan; 23(1):2. PubMed ID: 27924412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-invasive transmission electron microscopy of vacancy defects in graphene produced by ion irradiation.
    Lehtinen O; Tsai IL; Jalil R; Nair RR; Keinonen J; Kaiser U; Grigorieva IV
    Nanoscale; 2014 Jun; 6(12):6569-76. PubMed ID: 24802077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of carbon atoms around a point defect of a graphene: a hybrid quantum/classical molecular-dynamics simulation.
    Kowaki Y; Harada A; Shimojo F; Hoshino K
    J Phys Condens Matter; 2009 Feb; 21(6):064202. PubMed ID: 21715905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tight-binding calculation studies of vacancy and adatom defects in graphene.
    Zhang W; Lu WC; Zhang HX; Ho KM; Wang CZ
    J Phys Condens Matter; 2016 Mar; 28(11):115001. PubMed ID: 26902952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vacancy diffusion and coalescence in graphene directed by defect strain fields.
    Trevethan T; Latham CD; Heggie MI; Briddon PR; Rayson MJ
    Nanoscale; 2014 Mar; 6(5):2978-86. PubMed ID: 24487384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Dynamics Analysis of Graphene Nanoelectromechanical Resonators Based on Vacancy Defects.
    Li W; Tian W
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanopore Creation in Graphene by Ion Beam Irradiation: Geometry, Quality, and Efficiency.
    Bai Z; Zhang L; Li H; Liu L
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24803-9. PubMed ID: 27572502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Evolution of Structural Defects under Irradiation in W by Molecular Dynamics Simulation.
    Zheng R; Xuan W; Xie J; Chen S; Yang L; Zhang L
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defects and lithium migration in Li
    Kordatos A; Kuganathan N; Kelaidis N; Iyngaran P; Chroneos A
    Sci Rep; 2018 Apr; 8(1):6754. PubMed ID: 29712982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and decomposition analysis of TKX-50 with vacancy defects: insights from DFT and AIMD simulations.
    Guo Z; Wang X; Hao G; Xiao L; Feng X; Yang J; Jiang W
    Phys Chem Chem Phys; 2024 Mar; 26(12):9665-9674. PubMed ID: 38470042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers.
    Lee GD; Wang CZ; Yoon E; Hwang NM; Kim DY; Ho KM
    Phys Rev Lett; 2005 Nov; 95(20):205501. PubMed ID: 16384068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.