These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 31651035)

  • 41. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stress-Induced Volatile Emissions and Signalling in Inter-Plant Communication.
    Midzi J; Jeffery DW; Baumann U; Rogiers S; Tyerman SD; Pagay V
    Plants (Basel); 2022 Sep; 11(19):. PubMed ID: 36235439
    [TBL] [Abstract][Full Text] [Related]  

  • 43. How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis?
    López-Ráez JA
    Planta; 2016 Jun; 243(6):1375-85. PubMed ID: 26627211
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sniffing bacterial volatile compounds for healthier plants.
    Sharifi R; Ryu CM
    Curr Opin Plant Biol; 2018 Aug; 44():88-97. PubMed ID: 29579577
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Environmental interference of plant-microbe interactions.
    Bastías DA; Balestrini R; Pollmann S; Gundel PE
    Plant Cell Environ; 2022 Dec; 45(12):3387-3398. PubMed ID: 36180415
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Mass Spectrometry-Based Study Shows that Volatiles Emitted by
    Flores-Cortez I; Winkler R; Ramírez-Ordorica A; Elizarraraz-Anaya MIC; Carrillo-Rayas MT; Valencia-Cantero E; Macías-Rodríguez L
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31434211
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria.
    Tyc O; Song C; Dickschat JS; Vos M; Garbeva P
    Trends Microbiol; 2017 Apr; 25(4):280-292. PubMed ID: 28038926
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microbial small molecules - weapons of plant subversion.
    Stringlis IA; Zhang H; Pieterse CMJ; Bolton MD; de Jonge R
    Nat Prod Rep; 2018 May; 35(5):410-433. PubMed ID: 29756135
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dual functionality of natural mixtures of bacterial volatile compounds on plant growth.
    Song GC; Jeon JS; Sim HJ; Lee S; Jung J; Kim SG; Moon SY; Ryu CM
    J Exp Bot; 2022 Jan; 73(2):571-583. PubMed ID: 34679179
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deciphering the Root Endosphere Microbiome of the Desert Plant
    Zhang L; Zhang W; Li Q; Cui R; Wang Z; Wang Y; Zhang YZ; Ding W; Shen X
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220847
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Can Herbivore-Induced Volatiles Protect Plants by Increasing the Herbivores' Susceptibility to Natural Pathogens?
    Gasmi L; Martínez-Solís M; Frattini A; Ye M; Collado MC; Turlings TCJ; Erb M; Herrero S
    Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30366995
    [TBL] [Abstract][Full Text] [Related]  

  • 52. How do plants sense volatiles sent by other plants?
    Loreto F; D'Auria S
    Trends Plant Sci; 2022 Jan; 27(1):29-38. PubMed ID: 34544607
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tritrophic Interactions Mediated by Herbivore-Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential.
    Turlings TCJ; Erb M
    Annu Rev Entomol; 2018 Jan; 63():433-452. PubMed ID: 29324043
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phenotypic plasticity of floral volatiles in response to increasing drought stress.
    Campbell DR; Sosenski P; Raguso RA
    Ann Bot; 2019 Mar; 123(4):601-610. PubMed ID: 30364929
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom.
    Tyc O; Putra R; Gols R; Harvey JA; Garbeva P
    Microbiologyopen; 2020 Jan; 9(1):e00954. PubMed ID: 31721471
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative Digital Gene Expression Analysis of the Arabidopsis Response to Volatiles Emitted by Bacillus amyloliquefaciens.
    Hao HT; Zhao X; Shang QH; Wang Y; Guo ZH; Zhang YB; Xie ZK; Wang RY
    PLoS One; 2016; 11(8):e0158621. PubMed ID: 27513952
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator.
    Rering CC; Beck JJ; Hall GW; McCartney MM; Vannette RL
    New Phytol; 2018 Nov; 220(3):750-759. PubMed ID: 28960308
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture.
    Backer R; Rokem JS; Ilangumaran G; Lamont J; Praslickova D; Ricci E; Subramanian S; Smith DL
    Front Plant Sci; 2018; 9():1473. PubMed ID: 30405652
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of volatiles in plant communication.
    Bouwmeester H; Schuurink RC; Bleeker PM; Schiestl F
    Plant J; 2019 Dec; 100(5):892-907. PubMed ID: 31410886
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biogenic volatile organic compounds in the grapevine response to pathogens, beneficial microorganisms, resistance inducers, and abiotic factors.
    Lazazzara V; Avesani S; Robatscher P; Oberhuber M; Pertot I; Schuhmacher R; Perazzolli M
    J Exp Bot; 2022 Jan; 73(2):529-554. PubMed ID: 34409450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.