These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31651141)

  • 1. Understanding the Electrode/Electrolyte Interface Layer on the Li-Rich Nickel Manganese Cobalt Layered Oxide Cathode by XPS.
    Hekmatfar M; Kazzazi A; Eshetu GG; Hasa I; Passerini S
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43166-43179. PubMed ID: 31651141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights.
    Gauthier M; Carney TJ; Grimaud A; Giordano L; Pour N; Chang HH; Fenning DP; Lux SF; Paschos O; Bauer C; Maglia F; Lupart S; Lamp P; Shao-Horn Y
    J Phys Chem Lett; 2015 Nov; 6(22):4653-72. PubMed ID: 26510477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.
    Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA
    Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pinned Electrode/Electrolyte Interphase and Its Formation Origin for Sulfurized Polyacrylonitrile Cathode in Stable Lithium Batteries.
    Zhang X; Gao P; Wu Z; Engelhard MH; Cao X; Jia H; Xu Y; Liu H; Wang C; Liu J; Zhang JG; Liu P; Xu W
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52046-52057. PubMed ID: 36377408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries.
    Dose WM; Temprano I; Allen JP; Björklund E; O'Keefe CA; Li W; Mehdi BL; Weatherup RS; De Volder MFL; Grey CP
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13206-13222. PubMed ID: 35258927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations on the Fundamental Process of Cathode Electrolyte Interphase Formation and Evolution of High-Voltage Cathodes.
    Li Q; Wang Y; Wang X; Sun X; Zhang JN; Yu X; Li H
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2319-2326. PubMed ID: 31872999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries.
    Rinkel BLD; Vivek JP; Garcia-Araez N; Grey CP
    Energy Environ Sci; 2022 Aug; 15(8):3416-3438. PubMed ID: 36091097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable LiF-Rich Electrode-Electrolyte Interface toward High-Voltage and High-Energy-Density Lithium Metal Solid Batteries.
    Yang T; Zhang W; Lou J; Lu H; Xia Y; Huang H; Gan Y; He X; Wang Y; Tao X; Xia X; Zhang J
    Small; 2023 Jun; 19(24):e2300494. PubMed ID: 36920095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure formation and surface chemistry of ionic liquids on model electrode surfaces-Model studies for the electrode
    Buchner F; Uhl B; Forster-Tonigold K; Bansmann J; Groß A; Behm RJ
    J Chem Phys; 2018 May; 148(19):193821. PubMed ID: 30307189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2.
    Carroll KJ; Qian D; Fell C; Calvin S; Veith GM; Chi M; Baggetto L; Meng YS
    Phys Chem Chem Phys; 2013 Jul; 15(26):11128-38. PubMed ID: 23722534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated Evolution of Surface Chemistry Determined by Temperature and Cycling History in Nickel-Rich Layered Cathode Materials.
    Steiner JD; Mu L; Walsh J; Rahman MM; Zydlewski B; Michel FM; Xin HL; Nordlund D; Lin F
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23842-23850. PubMed ID: 29920072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries.
    Han JG; Lee SJ; Lee J; Kim JS; Lee KT; Choi NS
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8319-29. PubMed ID: 25822879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and Interface Design Enable Stable Li-Rich Cathode.
    Cui C; Fan X; Zhou X; Chen J; Wang Q; Ma L; Yang C; Hu E; Yang XQ; Wang C
    J Am Chem Soc; 2020 May; 142(19):8918-8927. PubMed ID: 32319764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrahigh Rate Performance of a Robust Lithium Nickel Manganese Cobalt Oxide Cathode with Preferentially Orientated Li-Diffusing Channels.
    Ren D; Padgett E; Yang Y; Shen L; Shen Y; Levin BDA; Yu Y; DiSalvo FJ; Muller DA; Abruña HD
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41178-41187. PubMed ID: 31600433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-Ion Chelating Gel Polymer Electrolyte for Ni-Rich Layered Cathode Materials at a High Voltage and an Elevated Temperature.
    Cho YG; Jung SH; Jeong J; Cha H; Baek K; Sung J; Kim M; Lee HT; Kong H; Cho J; Kang SJ; Park JM; Song HK
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9965-9974. PubMed ID: 33599475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilizing Polyether Electrolyte with a 4 V Metal Oxide Cathode by Nanoscale Interfacial Coating.
    Zhai H; Gong T; Xu B; Cheng Q; Paley D; Qie B; Jin T; Fu Z; Tan L; Lin YH; Nan CW; Yang Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28774-28780. PubMed ID: 31314493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Operando Fourier Transform Infrared Investigation of Cathode Electrolyte Interphase Dynamic Reversible Evolution on Li
    Meng Y; Chen G; Shi L; Liu H; Zhang D
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45108-45117. PubMed ID: 31710199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries.
    Li W; Dolocan A; Oh P; Celio H; Park S; Cho J; Manthiram A
    Nat Commun; 2017 Apr; 8():14589. PubMed ID: 28443608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing Depth-Dependent Transition-Metal Redox of Lithium Nickel, Manganese, and Cobalt Oxides in Li-Ion Batteries.
    Yu Y; Karayaylali P; Giordano L; Corchado-García J; Hwang J; Sokaras D; Maglia F; Jung R; Gittleson FS; Shao-Horn Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55865-55875. PubMed ID: 33283495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.