These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31651172)

  • 1. Effect of the Quadrupolar Trap Potential on the Rayleigh Instability and Breakup of a Levitated Charged Droplet.
    Singh M; Gawande N; Mayya YS; Thaokar R
    Langmuir; 2019 Dec; 35(48):15759-15768. PubMed ID: 31651172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translation-deformation coupling effects on the Rayleigh instability of an electrodynamically levitated charged droplet.
    Gawande N; Mayya YS; Thaokar R
    Eur Phys J E Soft Matter; 2022 May; 45(5):47. PubMed ID: 35556183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcritical asymmetric Rayleigh breakup of a charged drop induced by finite amplitude perturbations in a quadrupole trap.
    Singh M; Gawande N; Mayya YS; Thaokar R
    Phys Rev E; 2021 May; 103(5-1):053111. PubMed ID: 34134216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of a charged drop near a conductor wall.
    Mhatre SE; Deshmukh SD; Thaokar RM
    Eur Phys J E Soft Matter; 2012 May; 35(5):39. PubMed ID: 22644134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.
    Kabaliuk N; Jermy MC; Williams E; Laber TL; Taylor MC
    Forensic Sci Int; 2014 Dec; 245():107-20. PubMed ID: 25447183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying the field induced breakup of acoustically levitated drops.
    Warschat C; Riedel J
    Rev Sci Instrum; 2017 Oct; 88(10):105108. PubMed ID: 29092498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets.
    Castillo-Orozco E; Davanlou A; Choudhury PK; Kumar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053022. PubMed ID: 26651794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on interfacial stability and internal flow of a droplet levitated by ultrasonic wave.
    Abe Y; Yamamoto Y; Hyuga D; Awazu S; Aoki K
    Ann N Y Acad Sci; 2009 Apr; 1161():211-24. PubMed ID: 19426319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on internal flow and surface deformation of large droplet levitated by ultrasonic wave.
    Abe Y; Hyuga D; Yamada S; Aoki K
    Ann N Y Acad Sci; 2006 Sep; 1077():49-62. PubMed ID: 17124114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breakup and deformation of a droplet falling in a miscible solution.
    Shimokawa M; Mayumi R; Nakamura T; Takami T; Sakaguchi H
    Phys Rev E; 2016 Jun; 93(6):062214. PubMed ID: 27415262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels.
    Cheng WL; Sadr R; Dai J; Han A
    Biomed Microdevices; 2018 Aug; 20(3):72. PubMed ID: 30105562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catastrophic drop breakup in electric field.
    Raut JS; Akella S; Singh A; Naik VM
    Langmuir; 2009 May; 25(9):4829-34. PubMed ID: 19334721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coexistence of different droplet generating instabilities: new breakup regimes of a liquid filament.
    Hein M; Fleury JB; Seemann R
    Soft Matter; 2015 Jul; 11(26):5246-52. PubMed ID: 26053325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformation and breakup of a liquid droplet past a solid circular cylinder: a lattice Boltzmann study.
    Li Q; Chai Z; Shi B; Liang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043015. PubMed ID: 25375601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulations of electrostatically driven jets from nonviscous droplets.
    Garzon M; Gray LJ; Sethian JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033011. PubMed ID: 24730941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of noise on the stability of electrodynamically levitated one or many charged droplets.
    Singh M; Mayya YS; Thaokar R
    Eur Phys J E Soft Matter; 2019 Dec; 42(12):152. PubMed ID: 31797106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion-induced nucleation in solution: promotion of solute nucleation in charged levitated droplets.
    Draper ND; Bakhoum SF; Haddrell AE; Agnes GR
    J Am Chem Soc; 2007 Sep; 129(37):11364-77. PubMed ID: 17718487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating.
    Pathak B; Basu S
    Phys Rev E; 2016 Mar; 93(3):033103. PubMed ID: 27078443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of field-induced droplet ionization: time-resolved studies of distortion, jetting, and progeny formation from charged and neutral methanol droplets exposed to strong electric fields.
    Grimm RL; Beauchamp JL
    J Phys Chem B; 2005 Apr; 109(16):8244-50. PubMed ID: 16851963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.