These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31652002)

  • 21. Electrochemical Generation of Individual O
    Ren H; German SR; Edwards MA; Chen Q; White HS
    J Phys Chem Lett; 2017 Jun; 8(11):2450-2454. PubMed ID: 28516776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrogeneration of single nanobubbles at sub-50-nm-radius platinum nanodisk electrodes.
    Luo L; White HS
    Langmuir; 2013 Sep; 29(35):11169-75. PubMed ID: 23957440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface Nanobubbles Studied by Time-Resolved Fluorescence Microscopy Methods Combined with AFM: The Impact of Surface Treatment on Nanobubble Nucleation.
    Hain N; Wesner D; Druzhinin SI; Schönherr H
    Langmuir; 2016 Nov; 32(43):11155-11163. PubMed ID: 27268423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydroxide and Hydronium Ions Modulate the Dynamic Evolution of Nitrogen Nanobubbles in Water.
    Zhang P; Chen C; Feng M; Sun C; Xu X
    J Am Chem Soc; 2024 Jul; 146(28):19537-19546. PubMed ID: 38949461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemically reactive colloidal nanobubbles by water splitting.
    Yadav G; Nirmalkar N; Ohl CD
    J Colloid Interface Sci; 2024 Jun; 663():518-531. PubMed ID: 38422977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-Digit Nanobubble Sensing via Nanopore Technology.
    Liu W; Zheng F; Ma C; Xu W; Chen Y; Sha J
    Anal Chem; 2024 Jun; 96(23):9544-9550. PubMed ID: 38809167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanobubbles in solid-state nanopores.
    Smeets RM; Keyser UF; Wu MY; Dekker NH; Dekker C
    Phys Rev Lett; 2006 Aug; 97(8):088101. PubMed ID: 17026338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanobubble assisted nanopatterning utilized for ex situ identification of surface nanobubbles.
    Tarábková H; Janda P
    J Phys Condens Matter; 2013 May; 25(18):184001. PubMed ID: 23598572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules.
    Yanagi I; Akahori R; Takeda KI
    Sci Rep; 2019 Sep; 9(1):13143. PubMed ID: 31511597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface charge-induced EDL interaction on the contact angle of surface nanobubbles.
    Jing D; Li D; Pan Y; Bhushan B
    Langmuir; 2016 Nov; 32(43):11123-11132. PubMed ID: 27258966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanopore fabrication by controlled dielectric breakdown.
    Kwok H; Briggs K; Tabard-Cossa V
    PLoS One; 2014; 9(3):e92880. PubMed ID: 24658537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Capturing electrochemically evolved nanobubbles by electroless deposition. A facile route to the synthesis of hollow nanoparticles.
    Huang C; Jiang J; Lu M; Sun L; Meletis EI; Hao Y
    Nano Lett; 2009 Dec; 9(12):4297-301. PubMed ID: 19874046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of structured single-strand DNA via solid-state nanopore.
    Liu SC; Li Q; Ying YL; Long YT
    Electrophoresis; 2019 Aug; 40(16-17):2112-2116. PubMed ID: 30912583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Particle tracking around surface nanobubbles.
    Dietrich E; Zandvliet HJ; Lohse D; Seddon JR
    J Phys Condens Matter; 2013 May; 25(18):184009. PubMed ID: 23598947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On Nanobubble Dynamics under an Oscillating Pressure Field during Salting-out Effects and Its DLVO Potential.
    Agarwal K; Trivedi M; Ohl CD; Nirmalkar N
    Langmuir; 2023 Apr; 39(15):5250-5262. PubMed ID: 37014662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice.
    Ebina K; Shi K; Hirao M; Hashimoto J; Kawato Y; Kaneshiro S; Morimoto T; Koizumi K; Yoshikawa H
    PLoS One; 2013; 8(6):e65339. PubMed ID: 23755221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preferred sizes and ordering in surface nanobubble populations.
    Borkent BM; Schönherr H; Le Caër G; Dollet B; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036315. PubMed ID: 19905220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High throughput microfluidic nanobubble generation by microporous membrane integration and controlled bubble shrinkage.
    Paknahad AA; Zalloum IO; Karshafian R; Kolios MC; Tsai SSH
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):277-284. PubMed ID: 37716307
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Knudsen gas provides nanobubble stability.
    Seddon JR; Zandvliet HJ; Lohse D
    Phys Rev Lett; 2011 Sep; 107(11):116101. PubMed ID: 22026686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of Solid-Gas Interface of Nanobubbles for Therapeutic Applications.
    Shende PK; Desai D; Gaud RS
    Crit Rev Ther Drug Carrier Syst; 2018; 35(5):469-494. PubMed ID: 30317946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.