These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 31652004)
1. Drude polarizable force field for cation-π interactions of alkali and quaternary ammonium ions with aromatic amino acid side chains. Orabi EA; Davis RL; Lamoureux G J Comput Chem; 2020 Feb; 41(5):472-481. PubMed ID: 31652004 [TBL] [Abstract][Full Text] [Related]
2. Cation-π Interactions between Quaternary Ammonium Ions and Amino Acid Aromatic Groups in Aqueous Solution. Orabi EA; Lamoureux G J Phys Chem B; 2018 Mar; 122(8):2251-2260. PubMed ID: 29397727 [TBL] [Abstract][Full Text] [Related]
3. Cation [M = H+, Li+, Na+, K+, Ca2+, Mg2+, NH4+, and NMe4+] interactions with the aromatic motifs of naturally occurring amino acids: a theoretical study. Reddy AS; Sastry GN J Phys Chem A; 2005 Oct; 109(39):8893-903. PubMed ID: 16834293 [TBL] [Abstract][Full Text] [Related]
4. Effect of water coordination on competition between π and non-π cation binding sites in aromatic amino acids: L-phenylalanine, L-tyrosine, and L-tryptophan Li+, Na +, and K+ complexes. Remko M; Šoralová S J Biol Inorg Chem; 2012 Apr; 17(4):621-30. PubMed ID: 22327774 [TBL] [Abstract][Full Text] [Related]
5. Cation-π and π-π Interactions in Aqueous Solution Studied Using Polarizable Potential Models. Orabi EA; Lamoureux G J Chem Theory Comput; 2012 Jan; 8(1):182-93. PubMed ID: 26592880 [TBL] [Abstract][Full Text] [Related]
6. Cation-pi interactions with a model for the side chain of tryptophan: structures and absolute binding energies of alkali metal cation-indole complexes. Ruan C; Yang Z; Hallowita N; Rodgers MT J Phys Chem A; 2005 Dec; 109(50):11539-50. PubMed ID: 16354046 [TBL] [Abstract][Full Text] [Related]
7. Organometallic polymers assembled from cation-pi interactions: use of ferrocene as a ditopic linker within the homologous series [{(Me3Si)2NM}2.(Cp2Fe)]infinity (M=Na, K, Rb, Cs; Cp=cyclopentadienyl). Morris JJ; Noll BC; Honeyman GW; O'Hara CT; Kennedy AR; Mulvey RE; Henderson KW Chemistry; 2007; 13(16):4418-32. PubMed ID: 17455192 [TBL] [Abstract][Full Text] [Related]
8. Improving the Force Field Description of Tyrosine-Choline Cation-π Interactions: QM Investigation of Phenol-N(Me) Khan HM; Grauffel C; Broer R; MacKerell AD; Havenith RW; Reuter N J Chem Theory Comput; 2016 Nov; 12(11):5585-5595. PubMed ID: 27682345 [TBL] [Abstract][Full Text] [Related]
9. Improved Modeling of Cation-π and Anion-Ring Interactions Using the Drude Polarizable Empirical Force Field for Proteins. Lin FY; MacKerell AD J Comput Chem; 2020 Feb; 41(5):439-448. PubMed ID: 31518010 [TBL] [Abstract][Full Text] [Related]
10. Investigation of cation-pi interactions in biological systems. Wu R; McMahon TB J Am Chem Soc; 2008 Sep; 130(38):12554-5. PubMed ID: 18759391 [TBL] [Abstract][Full Text] [Related]
11. The cation-π interaction. Dougherty DA Acc Chem Res; 2013 Apr; 46(4):885-93. PubMed ID: 23214924 [TBL] [Abstract][Full Text] [Related]
12. Potential energy curves for cation-pi interactions: off-axis configurations are also attractive. Marshall MS; Steele RP; Thanthiriwatte KS; Sherrill CD J Phys Chem A; 2009 Dec; 113(48):13628-32. PubMed ID: 19886621 [TBL] [Abstract][Full Text] [Related]
13. DFT study of the interaction between DOTA chelator and competitive alkali metal ions. Frimpong E; Skelton AA; Honarparvar B J Mol Graph Model; 2017 Sep; 76():70-76. PubMed ID: 28711759 [TBL] [Abstract][Full Text] [Related]
14. Representation of Ion-Protein Interactions Using the Drude Polarizable Force-Field. Li H; Ngo V; Da Silva MC; Salahub DR; Callahan K; Roux B; Noskov SY J Phys Chem B; 2015 Jul; 119(29):9401-16. PubMed ID: 25578354 [TBL] [Abstract][Full Text] [Related]
15. Polarizable Force Field for Molecular Ions Based on the Classical Drude Oscillator. Lin FY; Lopes PEM; Harder E; Roux B; MacKerell AD J Chem Inf Model; 2018 May; 58(5):993-1004. PubMed ID: 29624370 [TBL] [Abstract][Full Text] [Related]
16. CH/pi interactions involving aromatic amino acids: refinement of the CHARMM tryptophan force field. Macias AT; Mackerell AD J Comput Chem; 2005 Nov; 26(14):1452-63. PubMed ID: 16088926 [TBL] [Abstract][Full Text] [Related]
17. A transferable ab initio based force field for aqueous ions. Tazi S; Molina JJ; Rotenberg B; Turq P; Vuilleumier R; Salanne M J Chem Phys; 2012 Mar; 136(11):114507. PubMed ID: 22443777 [TBL] [Abstract][Full Text] [Related]
18. Selective binding of monovalent cations to the stacking G-quartet structure formed by guanosine 5'-monophosphate: a solid-state NMR study. Wong A; Wu G J Am Chem Soc; 2003 Nov; 125(45):13895-905. PubMed ID: 14599230 [TBL] [Abstract][Full Text] [Related]
19. A solid-state 23Na NMR study of monovalent cation binding to double-stranded DNA at low relative humidity. Wong A; Yan Z; Huang Y; Wu G Magn Reson Chem; 2008 Apr; 46(4):308-15. PubMed ID: 18306259 [TBL] [Abstract][Full Text] [Related]
20. Explicit Representation of Cation-π Interactions in Force Fields with 1/ Turupcu A; Tirado-Rives J; Jorgensen WL J Chem Theory Comput; 2020 Nov; 16(11):7184-7194. PubMed ID: 33048555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]