BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 31652009)

  • 1. Oral Iron Replacement Normalizes Fibroblast Growth Factor 23 in Iron-Deficient Patients With Autosomal Dominant Hypophosphatemic Rickets.
    Imel EA; Liu Z; Coffman M; Acton D; Mehta R; Econs MJ
    J Bone Miner Res; 2020 Feb; 35(2):231-238. PubMed ID: 31652009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice.
    Clinkenbeard EL; Farrow EG; Summers LJ; Cass TA; Roberts JL; Bayt CA; Lahm T; Albrecht M; Allen MR; Peacock M; White KE
    J Bone Miner Res; 2014 Feb; 29(2):361-9. PubMed ID: 23873717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FGF23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets.
    Imel EA; Hui SL; Econs MJ
    J Bone Miner Res; 2007 Apr; 22(4):520-6. PubMed ID: 17227222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice.
    Farrow EG; Yu X; Summers LJ; Davis SI; Fleet JC; Allen MR; Robling AG; Stayrook KR; Jideonwo V; Magers MJ; Garringer HJ; Vidal R; Chan RJ; Goodwin CB; Hui SL; Peacock M; White KE
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):E1146-55. PubMed ID: 22006328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans.
    Imel EA; Peacock M; Gray AK; Padgett LR; Hui SL; Econs MJ
    J Clin Endocrinol Metab; 2011 Nov; 96(11):3541-9. PubMed ID: 21880793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease.
    Wolf M; White KE
    Curr Opin Nephrol Hypertens; 2014 Jul; 23(4):411-9. PubMed ID: 24867675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron replacement ameliorates hypophosphatemia in autosomal dominant hypophosphatemic rickets: A review of the role of iron.
    Menon LP; Weinstein RS
    Bone; 2020 Feb; 131():115137. PubMed ID: 31756522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron deficiency plays essential roles in the trigger, treatment, and prognosis of autosomal dominant hypophosphatemic rickets.
    Liu C; Li X; Zhao Z; Chi Y; Cui L; Zhang Q; Ping F; Chai X; Jiang Y; Wang O; Li M; Xing X; Xia W
    Osteoporos Int; 2021 Apr; 32(4):737-745. PubMed ID: 32995940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FGF23 analysis of a Chinese family with autosomal dominant hypophosphatemic rickets.
    Sun Y; Wang O; Xia W; Jiang Y; Li M; Xing X; Hu Y; Liu H; Meng X; Zhou X
    J Bone Miner Metab; 2012 Jan; 30(1):78-84. PubMed ID: 21710177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic rescue of glycosylation-deficient Fgf23 in the Galnt3 knockout mouse.
    Ichikawa S; Gray AK; Padgett LR; Allen MR; Clinkenbeard EL; Sarpa NM; White KE; Econs MJ
    Endocrinology; 2014 Oct; 155(10):3891-8. PubMed ID: 25051439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Phosphate metabolism and iron deficiency].
    Yokoyama K
    Clin Calcium; 2016 Feb; 26(2):241-9. PubMed ID: 26813504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Earlier Onset in Autosomal Dominant Hypophosphatemic Rickets of R179 than R176 Mutations in Fibroblast Growth Factor 23: Report of 20 Chinese Cases and Review of the Literature.
    Liu C; Zhao Z; Wang O; Li M; Xing X; Hsieh E; Fukumoto S; Jiang Y; Xia W
    Calcif Tissue Int; 2019 Nov; 105(5):476-486. PubMed ID: 31486862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autosomal Dominant Hypophosphatemic Rickets: A Case Report and Review of the Literature.
    Mameli C; Sangiorgio A; Colombo V; Gambino M; Spaccini L; Cattaneo E; Zuccotti GV
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron Supplementation Associated With Loss of Phenotype in Autosomal Dominant Hypophosphatemic Rickets.
    Kapelari K; Köhle J; Kotzot D; Högler W
    J Clin Endocrinol Metab; 2015 Sep; 100(9):3388-92. PubMed ID: 26186302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of X-linked hypophosphatemia with calcitriol and phosphate increases circulating fibroblast growth factor 23 concentrations.
    Imel EA; DiMeglio LA; Hui SL; Carpenter TO; Econs MJ
    J Clin Endocrinol Metab; 2010 Apr; 95(4):1846-50. PubMed ID: 20157195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron and fibroblast growth factor 23 in X-linked hypophosphatemia.
    Imel EA; Gray AK; Padgett LR; Econs MJ
    Bone; 2014 Mar; 60():87-92. PubMed ID: 24325979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone characteristics of autosomal dominant hypophosphatemic rickets patients.
    Liu C; Ni X; Zhao Z; Qi W; Jiang Y; Li M; Wang O; Xing X; Xia W
    Bone; 2023 Feb; 167():116602. PubMed ID: 36347435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An autosomal dominant hypophosphatemic rickets phenotype in a Tunisian family caused by a new FGF23 missense mutation.
    Gribaa M; Younes M; Bouyacoub Y; Korbaa W; Ben Charfeddine I; Touzi M; Adala L; Mamay O; Bergaoui N; Saad A
    J Bone Miner Metab; 2010; 28(1):111-5. PubMed ID: 19655082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate homeostasis and genetic mutations of familial hypophosphatemic rickets.
    Razali NN; Hwu TT; Thilakavathy K
    J Pediatr Endocrinol Metab; 2015 Sep; 28(9-10):1009-17. PubMed ID: 25894638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Therapies for Hypophosphatemia-Related to FGF23 Excess.
    Athonvarangkul D; Insogna KL
    Calcif Tissue Int; 2021 Jan; 108(1):143-157. PubMed ID: 32504139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.