These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31652044)

  • 21. Well-designed internal electric field from nano-ferroelectrics promotes formic acid oxidation on Pd.
    Luo G; Hu S; Niu D; Sun S; Zhang X
    Nanoscale; 2022 Apr; 14(16):6007-6020. PubMed ID: 35274645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamically self-assembled adenine-mediated synthesis of pristine graphene-supported clean Pd nanoparticles with superior electrocatalytic performance toward formic acid oxidation.
    Yang Q; Lin H; Wang X; Zhang LY; Jing M; Yuan W; Li CM
    J Colloid Interface Sci; 2022 May; 613():515-523. PubMed ID: 35063783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Facile Preparation of Sandwich-Structured Pd/Polypyrrole-Graphene/Pd Catalysts for Formic Acid Electro-Oxidation.
    Lu Z; Qin W; Ma J; Cao Y; Bao S
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Various Morphology of WO₃ Modified Activated Carbon Supported Pd Catalysts with Enhanced Formic Acid Electrooxidation.
    Li PW; Li YH; Ma YM; Li QX
    J Nanosci Nanotechnol; 2019 Dec; 19(12):7777-7784. PubMed ID: 31196289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rod-like MnO
    Ren F; Chen X; Xing R; Du Y
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):561-568. PubMed ID: 32911405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction.
    Qu K; Wu L; Ren J; Qu X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):5001-9. PubMed ID: 22973944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly durable Pd metal catalysts for the oxygen reduction reaction in fuel cells; coverage of Pd metal with silica.
    Takenaka S; Susuki N; Miyamoto H; Tanabe E; Matsune H; Kishida M
    Chem Commun (Camb); 2010 Dec; 46(47):8950-2. PubMed ID: 20976331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anchoring and Upgrading Ultrafine NiPd on Room-Temperature-Synthesized Bifunctional NH
    Yan JM; Li SJ; Yi SS; Wulan BR; Zheng WT; Jiang Q
    Adv Mater; 2018 Mar; 30(12):e1703038. PubMed ID: 29411459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of stable bio-Pd catalysts for environmental pollutant remediation.
    Chen H; Zhou Z; Chen W; Xiang Z; Nie H; Yu W
    RSC Adv; 2021 Nov; 11(57):36174-36180. PubMed ID: 35492763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-pot synthesis of graphene-supported monodisperse Pd nanoparticles as catalyst for formic acid electro-oxidation.
    Yang S; Dong J; Yao Z; Shen C; Shi X; Tian Y; Lin S; Zhang X
    Sci Rep; 2014 Mar; 4():4501. PubMed ID: 24675779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bifunctional Electrocatalyst of Pd-C@MoS₂-RGO Hybrid Nanostructures-Size Confined Green Synthesis for Direct Alcohol Fuel Cells.
    Kannan R; Lim CD; Kim AR; Lee MH; Yoo DJ
    J Nanosci Nanotechnol; 2019 Aug; 19(8):4520-4528. PubMed ID: 30913743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly Stable Single-Atom Catalyst with Ionic Pd Active Sites Supported on N-Doped Carbon Nanotubes for Formic Acid Decomposition.
    Podyacheva OY; Bulushev DA; Suboch AN; Svintsitskiy DA; Lisitsyn AS; Modin E; Chuvilin A; Gerasimov EY; Sobolev VI; Parmon VN
    ChemSusChem; 2018 Nov; 11(21):3724-3727. PubMed ID: 30175551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hollow palladium nanospheres with porous shells supported on graphene as enhanced electrocatalysts for formic acid oxidation.
    Wang B; Yang J; Wang L; Wang R; Tian C; Jiang B; Tian M; Fu H
    Phys Chem Chem Phys; 2013 Nov; 15(44):19353-9. PubMed ID: 24121733
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile Preparation of Ultrathin Co
    Chen Y; Hu J; Diao H; Luo W; Song YF
    Chemistry; 2017 Mar; 23(16):4010-4016. PubMed ID: 28150913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The in situ growth of ultrathin Fcc-NiPt nanocrystals on graphene for methanol and formic acid oxidation.
    Lin L; Yuan M; Sun Z; Li H; Nan C; Sun G; Ma S
    Dalton Trans; 2018 Oct; 47(42):15131-15140. PubMed ID: 30310897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CoP/RGO-Pd Hybrids with Heterointerfaces as Highly Active Catalysts for Ethanol Electrooxidation.
    Wang M; Ding R; Xiao Y; Wang H; Wang L; Chen CM; Mu Y; Wu GP; Lv B
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28903-28914. PubMed ID: 32470287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fe-N-Doped Mesoporous Carbon with Dual Active Sites Loaded on Reduced Graphene Oxides for Efficient Oxygen Reduction Catalysts.
    Zhang C; Liu J; Ye Y; Aslam Z; Brydson R; Liang C
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2423-2429. PubMed ID: 29298036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pd/MXene(Ti
    Zhang P; Fan C; Wang R; Xu C; Cheng J; Wang L; Lu Y; Luo P
    Nanotechnology; 2020 Feb; 31(9):09LT01. PubMed ID: 31711050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Twisted palladium-copper nanochains toward efficient electrocatalytic oxidation of formic acid.
    Zhang LY; Gong Y; Wu D; Wu G; Xu B; Bi L; Yuan W; Cui Z
    J Colloid Interface Sci; 2019 Mar; 537():366-374. PubMed ID: 30453230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High Methanol Electro-Oxidation Using PtCo/Reduced Graphene Oxide (rGO) Anode Nanocatalysts in Direct Methanol Fuel Cell.
    Baronia R; Goel J; Singhal SK
    J Nanosci Nanotechnol; 2019 Jul; 19(7):4315-4322. PubMed ID: 30765012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.