These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 31652054)

  • 1. Perspectives on Exploring Denitrifying Fungi as a Model To Evaluate Nitrous Oxide Production and Reduce Emissions from Agricultural Soils.
    de Oliveira TB; de Lucas RC; Scarcella ASA; Pasin TM; Martínez CA; Polizeli MLTM
    J Agric Food Chem; 2019 Nov; 67(44):12153-12154. PubMed ID: 31652054
    [No Abstract]   [Full Text] [Related]  

  • 2. Novel P450nor Gene Detection Assay Used To Characterize the Prevalence and Diversity of Soil Fungal Denitrifiers.
    Novinscak A; Goyer C; Zebarth BJ; Burton DL; Chantigny MH; Filion M
    Appl Environ Microbiol; 2016 Aug; 82(15):4560-4569. PubMed ID: 27208113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies].
    Zhu YG; Wang XH; Yang XR; Xu HJ; Jia Y
    Huan Jing Ke Xue; 2014 Feb; 35(2):792-800. PubMed ID: 24812980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitigation of nitrous oxide emissions from acidic soils by Bacillus amyloliquefaciens, a plant growth-promoting bacterium.
    Wu S; Zhuang G; Bai Z; Cen Y; Xu S; Sun H; Han X; Zhuang X
    Glob Chang Biol; 2018 Jun; 24(6):2352-2365. PubMed ID: 29251817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of antibacterial and antifungal compounds for selective inhibition of denitrification in soils.
    Ladan S; Jacinthe PA
    Environ Sci Process Impacts; 2016 Dec; 18(12):1519-1529. PubMed ID: 27824186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Lumbricus terrestris and Folsomia candida on N
    Schorpp Q; Riggers C; Lewicka-Szczebak D; Giesemann A; Well R; Schrader S
    Rapid Commun Mass Spectrom; 2016 Nov; 30(21):2301-2314. PubMed ID: 27510404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of oxygen isotopes to differentiate between nitrous oxide produced by fungi or bacteria during denitrification.
    Rohe L; Well R; Lewicka-Szczebak D
    Rapid Commun Mass Spectrom; 2017 Aug; 31(16):1297-1312. PubMed ID: 28556299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil formate regulates the fungal nitrous oxide emission pathway.
    Ma WK; Farrell RE; Siciliano SD
    Appl Environ Microbiol; 2008 Nov; 74(21):6690-6. PubMed ID: 18791019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field-aged biochar stimulated N
    Duan P; Zhang X; Zhang Q; Wu Z; Xiong Z
    Sci Total Environ; 2018 Nov; 642():1303-1310. PubMed ID: 30045510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of denitrifying bacterial communities to short-term waterlogging of soils.
    Wang Y; Uchida Y; Shimomura Y; Akiyama H; Hayatsu M
    Sci Rep; 2017 Apr; 7(1):803. PubMed ID: 28400580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions.
    Thomson AJ; Giannopoulos G; Pretty J; Baggs EM; Richardson DJ
    Philos Trans R Soc Lond B Biol Sci; 2012 May; 367(1593):1157-68. PubMed ID: 22451101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variations of the nirS-, nirK-, and nosZ-denitrifying bacterial communities in a northern Chinese soil as affected by different long-term irrigation regimes.
    Yang YD; Hu YG; Wang ZM; Zeng ZH
    Environ Sci Pollut Res Int; 2018 May; 25(14):14057-14067. PubMed ID: 29520544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peaks of in situ N
    Domeignoz-Horta LA; Philippot L; Peyrard C; Bru D; Breuil MC; Bizouard F; Justes E; Mary B; Léonard J; Spor A
    Glob Chang Biol; 2018 Jan; 24(1):360-370. PubMed ID: 28752605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Contribution of fungi to soil nitrous oxide emission and their research methods: a review].
    Huang Y; Long XE
    Ying Yong Sheng Tai Xue Bao; 2014 Apr; 25(4):1213-20. PubMed ID: 25011320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal contribution to nitrous oxide emissions from cattle impacted soils.
    Jirout J; Šimek M; Elhottová D
    Chemosphere; 2013 Jan; 90(2):565-72. PubMed ID: 22981628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Denitrification potential and CO2 emission in the northern forest soils of the Enisei meridian (the Siberian IGBP transect)].
    Meniaĭlo OV; Krasnoshchekov IuN
    Izv Akad Nauk Ser Biol; 2003; (3):365-70. PubMed ID: 12816071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics.
    Zheng J; Doskey PV
    Environ Sci Technol; 2015 Feb; 49(4):2132-9. PubMed ID: 25588118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrifier-induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4-dimethylpyrazole phosphate.
    Shi X; Hu HW; Zhu-Barker X; Hayden H; Wang J; Suter H; Chen D; He JZ
    Environ Microbiol; 2017 Dec; 19(12):4851-4865. PubMed ID: 28752902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial gene abundances as indicators of greenhouse gas emission in soils.
    Morales SE; Cosart T; Holben WE
    ISME J; 2010 Jun; 4(6):799-808. PubMed ID: 20182521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and Diversity of Fungal Nitric Oxide Reductase Genes (p450nor) in Agricultural Soils.
    Higgins SA; Welsh A; Orellana LH; Konstantinidis KT; Chee-Sanford JC; Sanford RA; Schadt CW; Löffler FE
    Appl Environ Microbiol; 2016 May; 82(10):2919-2928. PubMed ID: 26969694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.