BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31652059)

  • 1. Development of Fertilizer Coatings from Polyglyoxylate-Polyester Blends Responsive to Root-Driven pH Change.
    Heuchan SM; Fan B; Kowalski JJ; Gillies ER; Henry HAL
    J Agric Food Chem; 2019 Nov; 67(46):12720-12729. PubMed ID: 31652059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinduced Degradation of Polymer Films Using Polyglyoxylate-Polyester Blends and Copolymers.
    Heuchan SM; MacDonald JP; Bauman LA; Fan B; Henry HAL; Gillies ER
    ACS Omega; 2018 Dec; 3(12):18603-18612. PubMed ID: 31458428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Nano Fe
    Shen Y; Du C; Zhou J; Ma F
    J Agric Food Chem; 2017 Feb; 65(5):1030-1036. PubMed ID: 28099000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing Slow-Release Formulations of Ammonium Nitrate Fertilizer Based on Degradable Poly(3-hydroxybutyrate).
    Boyandin AN; Kazantseva EA; Varygina DE; Volova TG
    J Agric Food Chem; 2017 Aug; 65(32):6745-6752. PubMed ID: 28723220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-Responsive Poly(glyoxylate) Self-Immolative Star Polymers.
    Zhang C; Kermaniyan S; Smith SA; Gillies ER; Such GK
    Biomacromolecules; 2021 Sep; 22(9):3892-3900. PubMed ID: 34410113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Polyester Self-Immolative Polymer Nanoparticles for Controlled Drug Release.
    Gambles MT; Fan B; Borecki A; Gillies ER
    ACS Omega; 2018 May; 3(5):5002-5011. PubMed ID: 31458713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of polyhydroxybutyrate and ethyl cellulose for coating of urea granules.
    Costa MM; Cabral-Albuquerque EC; Alves TL; Pinto JC; Fialho RL
    J Agric Food Chem; 2013 Oct; 61(42):9984-91. PubMed ID: 24059839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical properties of film-coated melt-extruded pellets.
    Young CR; Crowley M; Dietzsch C; McGinity JW
    J Microencapsul; 2007 Feb; 24(1):57-71. PubMed ID: 17438942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing Slow-Release Formulations of Metribuzin Based on Degradable Poly(3-hydroxybutyrate).
    Boyandin AN; Zhila NO; Kiselev EG; Volova TG
    J Agric Food Chem; 2016 Jul; 64(28):5625-32. PubMed ID: 27356030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the drug release patterns and long term stability of aqueous and organic coated pellets by using blends of enteric and gastrointestinal insoluble polymers.
    Kranz H; Gutsche S
    Int J Pharm; 2009 Oct; 380(1-2):112-9. PubMed ID: 19632313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-Sensitive polymer blends used as coating materials to control drug release from spherical beads: elucidation of the underlying mass transport mechanisms.
    Lecomte F; Siepmann J; Walther M; MacRae RJ; Bodmeier R
    Pharm Res; 2005 Jul; 22(7):1129-41. PubMed ID: 16028014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of physicochemical factors on the release kinetics of hydrophilic drugs from poly(L-lactic acid) (L-PLA) pellets.
    Kader A; Jalil R
    Drug Dev Ind Pharm; 1998 Jun; 24(6):535-9. PubMed ID: 9876619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of polysulfone in controlled-release NPK fertilizer formulations.
    Tomaszewska M; Jarosiewicz A
    J Agric Food Chem; 2002 Jul; 50(16):4634-9. PubMed ID: 12137488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-based Interpenetrating Network Polymer Composites from Locust Sawdust as Coating Material for Environmentally Friendly Controlled-Release Urea Fertilizers.
    Zhang S; Yang Y; Gao B; Wan Y; Li YC; Zhao C
    J Agric Food Chem; 2016 Jul; 64(28):5692-700. PubMed ID: 27352017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coatings from blends of Eudragit® RL and L55: a novel approach in pH-controlled drug release.
    Wulff R; Leopold CS
    Int J Pharm; 2014 Dec; 476(1-2):78-87. PubMed ID: 25239771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable pseudolatexes: the chemical stability of poly(D,L-lactide) and poly(epsilon-caprolactone) nanoparticles in aqueous media.
    Coffin MD; McGinity JW
    Pharm Res; 1992 Feb; 9(2):200-5. PubMed ID: 1553342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled-release fertilizer prepared using a biodegradable aliphatic copolyester of poly(butylene succinate) and dimerized fatty acid.
    Lubkowski K; Smorowska A; Grzmil B; Kozłowska A
    J Agric Food Chem; 2015 Mar; 63(10):2597-605. PubMed ID: 25715823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro release of theophylline from poly(lactic acid) sustained-release pellets prepared by direct compression.
    Kader A; Jalil R
    Drug Dev Ind Pharm; 1998 Jun; 24(6):527-34. PubMed ID: 9876618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled drug release through regulated biodegradation of poly(lactic acid) using inorganic salts.
    Kumar S; Singh S; Senapati S; Singh AP; Ray B; Maiti P
    Int J Biol Macromol; 2017 Nov; 104(Pt A):487-497. PubMed ID: 28624369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depolymerization of Trityl End-Capped Poly(Ethyl Glyoxylate): Potential Applications in Smart Packaging.
    Fan B; Salazar R; Gillies ER
    Macromol Rapid Commun; 2018 Jun; 39(11):e1800173. PubMed ID: 29700924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.