These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 31652303)
1. The chromogranin A-derived antifungal peptide CGA-N9 induces apoptosis in Candida tropicalis. Li R; Chen C; Zhang B; Jing H; Wang Z; Wu C; Hao P; Kuang Y; Yang M Biochem J; 2019 Oct; 476(20):3069-3080. PubMed ID: 31652303 [TBL] [Abstract][Full Text] [Related]
2. CGA-N12, a peptide derived from chromogranin A, promotes apoptosis of Li R; Zhang R; Yang Y; Wang X; Yi Y; Fan P; Liu Z; Chen C; Chang J Biochem J; 2018 Apr; 475(7):1385-1396. PubMed ID: 29559502 [TBL] [Abstract][Full Text] [Related]
3. Antimicrobial peptide CGA-N12 decreases the Candida tropicalis mitochondrial membrane potential via mitochondrial permeability transition pore. Li R; Zhao J; Huang L; Yi Y; Li A; Li D; Tao M; Liu Y Biosci Rep; 2020 May; 40(5):. PubMed ID: 32368781 [TBL] [Abstract][Full Text] [Related]
4. CGA-N9, an antimicrobial peptide derived from chromogranin A: direct cell penetration of and endocytosis by Li R; Chen C; Zhu S; Wang X; Yang Y; Shi W; Chen S; Wang C; Yan L; Shi J Biochem J; 2019 Feb; 476(3):483-497. PubMed ID: 30610128 [TBL] [Abstract][Full Text] [Related]
5. The antifungal peptide CGA-N12 inhibits cell wall synthesis of Candida tropicalis by interacting with KRE9. Li R; Liu Z; Dong W; Zhang L; Zhang B; Li D; Fu C Biochem J; 2020 Feb; 477(3):747-762. PubMed ID: 31934718 [TBL] [Abstract][Full Text] [Related]
6. Candida tropicalis oligopeptide transporters assist in the transmembrane transport of the antimicrobial peptide CGA-N9. Wu J; Li R; Shen Y; Zhang X; Wang X; Wang Z; Zhao Y; Huang L; Zhang L; Zhang B Biochem Biophys Res Commun; 2023 Mar; 649():101-109. PubMed ID: 36764112 [TBL] [Abstract][Full Text] [Related]
7. Internalization and membrane activity of the antimicrobial peptide CGA-N12. Li R; Tao M; Li S; Wang X; Yang Y; Mo L; Zhang K; Wei A; Huang L Biochem J; 2021 May; 478(10):1907-1919. PubMed ID: 33955460 [TBL] [Abstract][Full Text] [Related]
8. Effects of CGA-N12 on the membrane structure of Candida tropicalis cells. Li R; Shi W; Zhang R; Huang L; Yi Y; Li A; Jing H; Tao M; Zhang M; Pei N Biochem J; 2020 May; 477(10):1813-1825. PubMed ID: 32348458 [TBL] [Abstract][Full Text] [Related]
9. Fatty acid modification of antimicrobial peptide CGA-N9 and the combats against Candida albicans infection. Li R; Wang X; Yin K; Xu Q; Ren S; Wang X; Wang Z; Yi Y Biochem Pharmacol; 2023 May; 211():115535. PubMed ID: 37019190 [TBL] [Abstract][Full Text] [Related]
10. Scolopendin, an antimicrobial peptide from centipede, attenuates mitochondrial functions and triggers apoptosis in Lee H; Hwang JS; Lee DG Biochem J; 2017 Feb; 474(5):635-645. PubMed ID: 28008133 [TBL] [Abstract][Full Text] [Related]
11. Reactive oxygen species-independent apoptotic pathway by gold nanoparticles in Candida albicans. Seong M; Lee DG Microbiol Res; 2018 Mar; 207():33-40. PubMed ID: 29458866 [TBL] [Abstract][Full Text] [Related]
12. Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction. Choi H; Lee DG Biochimie; 2015 Aug; 115():108-15. PubMed ID: 26005097 [TBL] [Abstract][Full Text] [Related]
13. Antifungal activity of naphthoquinoidal compounds in vitro against fluconazole-resistant strains of different Candida species: a special emphasis on mechanisms of action on Candida tropicalis. Neto JB; da Silva CR; Neta MA; Campos RS; Siebra JT; Silva RA; Gaspar DM; Magalhães HI; de Moraes MO; Lobo MD; Grangeiro TB; Carvalho TS; Diogo EB; da Silva Júnior EN; Rodrigues FA; Cavalcanti BC; Júnior HV PLoS One; 2014; 9(5):e93698. PubMed ID: 24817320 [TBL] [Abstract][Full Text] [Related]
14. Antifungal activity of human antimicrobial peptides targeting apoptosis in Shaban S; Patel M; Ahmad A J Med Microbiol; 2024 May; 73(5):. PubMed ID: 38743468 [No Abstract] [Full Text] [Related]
15. Naringin-generated ROS promotes mitochondria-mediated apoptosis in Candida albicans. Kim H; Lee DG IUBMB Life; 2021 Jul; 73(7):953-967. PubMed ID: 33934490 [TBL] [Abstract][Full Text] [Related]
16. Action mechanism of naphthofuranquinones against fluconazole-resistant Candida tropicalis strains evidenced by proteomic analysis: The role of increased endogenous ROS. de Andrade Neto JB; da Silva CR; Campos RS; do Nascimento FBSA; Sampaio LS; da Silva AR; Josino MAA; de Moraes MO; Lobo MDP; Moreno FBMB; Moreira ACOM; de Azevedo Moreira R; Grangeiro TB; da Silva Júnior EN; Magalhães HIF; Rocha DD; Cavalcanti BC; Júnior HVN Microb Pathog; 2018 Apr; 117():32-42. PubMed ID: 29229505 [TBL] [Abstract][Full Text] [Related]
17. Rational design, synthesis, antifungal evaluation and docking studies of antifungal peptide CGA-N12 analogues based on the target CtKRE9. Li R; Wu J; He F; Xu Q; Yin K; Li S; Li W; Wei A; Zhang L; Zhang XH; Zhang B Bioorg Chem; 2023 Mar; 132():106355. PubMed ID: 36669359 [TBL] [Abstract][Full Text] [Related]
18. Scolopendin 2 leads to cellular stress response in Candida albicans. Lee H; Hwang JS; Lee DG Apoptosis; 2016 Jul; 21(7):856-65. PubMed ID: 27207682 [TBL] [Abstract][Full Text] [Related]
19. A novel mechanism of fluconazole: fungicidal activity through dose-dependent apoptotic responses in Candida albicans. Lee W; Lee DG Microbiology (Reading); 2018 Feb; 164(2):194-204. PubMed ID: 29393017 [TBL] [Abstract][Full Text] [Related]
20. Role of calcium in reactive oxygen species-induced apoptosis in Candida albicans: an antifungal mechanism of antimicrobial peptide, PMAP-23. Kim S; Lee DG Free Radic Res; 2019 Jan; 53(1):8-17. PubMed ID: 30403895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]