BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31652536)

  • 1. Tumor Cells Develop Defined Cellular Phenotypes After 3D-Bioprinting in Different Bioinks.
    Schmidt SK; Schmid R; Arkudas A; Kengelbach-Weigand A; Bosserhoff AK
    Cells; 2019 Oct; 8(10):. PubMed ID: 31652536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.
    Zhao Y; Li Y; Mao S; Sun W; Yao R
    Biofabrication; 2015 Nov; 7(4):045002. PubMed ID: 26523399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks.
    Göhl J; Markstedt K; Mark A; Håkansson K; Gatenholm P; Edelvik F
    Biofabrication; 2018 Jun; 10(3):034105. PubMed ID: 29809162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of two different alginate-based bioinks and the influence of melanoma growth within.
    Schipka R; Heltmann-Meyer S; Schneidereit D; Friedrich O; Röder J; Boccaccini AR; Schrüfer S; Schubert DW; Horch RE; Bosserhoff AK; Arkudas A; Kengelbach-Weigand A; Schmid R
    Sci Rep; 2024 Jun; 14(1):12945. PubMed ID: 38839791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.
    Ouyang L; Yao R; Zhao Y; Sun W
    Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.
    Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H
    Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior.
    Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA
    Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber Reinforced Cartilage ECM Functionalized Bioinks for Functional Cartilage Tissue Engineering.
    Rathan S; Dejob L; Schipani R; Haffner B; Möbius ME; Kelly DJ
    Adv Healthc Mater; 2019 Apr; 8(7):e1801501. PubMed ID: 30624015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation.
    Ali M; Pr AK; Yoo JJ; Zahran F; Atala A; Lee SJ
    Adv Healthc Mater; 2019 Apr; 8(7):e1800992. PubMed ID: 30725520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments.
    Kim BS; Das S; Jang J; Cho DW
    Chem Rev; 2020 Oct; 120(19):10608-10661. PubMed ID: 32786425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro.
    Das S; Kim SW; Choi YJ; Lee S; Lee SH; Kong JS; Park HJ; Cho DW; Jang J
    Acta Biomater; 2019 Sep; 95():188-200. PubMed ID: 30986526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells.
    Ojansivu M; Rashad A; Ahlinder A; Massera J; Mishra A; Syverud K; Finne-Wistrand A; Miettinen S; Mustafa K
    Biofabrication; 2019 Apr; 11(3):035010. PubMed ID: 30754034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks.
    Luo Y; Lin X; Chen B; Wei X
    Biofabrication; 2019 Sep; 11(4):045019. PubMed ID: 31394520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting.
    Wilson SA; Cross LM; Peak CW; Gaharwar AK
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43449-43458. PubMed ID: 29214803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking.
    Petta D; Armiento AR; Grijpma D; Alini M; Eglin D; D'Este M
    Biofabrication; 2018 Sep; 10(4):044104. PubMed ID: 30188324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.
    Pati F; Cho DW
    Methods Mol Biol; 2017; 1612():381-390. PubMed ID: 28634957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Bioink from Decellularized Tendon Extracellular Matrix for 3D Bioprinting.
    Toprakhisar B; Nadernezhad A; Bakirci E; Khani N; Skvortsov GA; Koc B
    Macromol Biosci; 2018 Oct; 18(10):e1800024. PubMed ID: 30019414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.