These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
522 related articles for article (PubMed ID: 31652616)
1. Real-Time EMG Based Pattern Recognition Control for Hand Prostheses: A Review on Existing Methods, Challenges and Future Implementation. Parajuli N; Sreenivasan N; Bifulco P; Cesarelli M; Savino S; Niola V; Esposito D; Hamilton TJ; Naik GR; Gunawardana U; Gargiulo GD Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31652616 [TBL] [Abstract][Full Text] [Related]
2. A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees. Amsuess S; Goebel P; Graimann B; Farina D IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):827-36. PubMed ID: 25296406 [TBL] [Abstract][Full Text] [Related]
3. Interface Prostheses With Classifier-Feedback-Based User Training. Fang Y; Zhou D; Li K; Liu H IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744 [TBL] [Abstract][Full Text] [Related]
4. A Systematic Study on Electromyography-Based Hand Gesture Recognition for Assistive Robots Using Deep Learning and Machine Learning Models. Gopal P; Gesta A; Mohebbi A Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632058 [TBL] [Abstract][Full Text] [Related]
5. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees. Geng Y; Zhou P; Li G J Neuroeng Rehabil; 2012 Oct; 9():74. PubMed ID: 23036049 [TBL] [Abstract][Full Text] [Related]
6. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients. Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501 [TBL] [Abstract][Full Text] [Related]
8. Improved hand prostheses control for transradial amputees based on hybrid of voice recognition and electromyography. Alkhafaf OS; Wali MK; Al-Timemy AH Int J Artif Organs; 2021 Jul; 44(7):509-517. PubMed ID: 33287634 [TBL] [Abstract][Full Text] [Related]
9. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees. Li X; Samuel OW; Zhang X; Wang H; Fang P; Li G J Neuroeng Rehabil; 2017 Jan; 14(1):2. PubMed ID: 28061779 [TBL] [Abstract][Full Text] [Related]
10. Realizing Efficient EMG-Based Prosthetic Control Strategy. Li G; Samuel OW; Lin C; Asogbon MG; Fang P; Idowu PO Adv Exp Med Biol; 2019; 1101():149-166. PubMed ID: 31729675 [TBL] [Abstract][Full Text] [Related]
11. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control. Daley H; Englehart K; Hargrove L; Kuruganti U J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773 [TBL] [Abstract][Full Text] [Related]
12. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies. Benatti S; Milosevic B; Farella E; Gruppioni E; Benini L Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420135 [TBL] [Abstract][Full Text] [Related]
13. Resolving the effect of wrist position on myoelectric pattern recognition control. Adewuyi AA; Hargrove LJ; Kuiken TA J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991 [TBL] [Abstract][Full Text] [Related]
14. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements. Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795 [TBL] [Abstract][Full Text] [Related]
15. Real-time intelligent pattern recognition algorithm for surface EMG signals. Khezri M; Jahed M Biomed Eng Online; 2007 Dec; 6():45. PubMed ID: 18053184 [TBL] [Abstract][Full Text] [Related]
16. Towards resolving the co-existing impacts of multiple dynamic factors on the performance of EMG-pattern recognition based prostheses. Asogbon MG; Samuel OW; Geng Y; Oluwagbemi O; Ning J; Chen S; Ganesh N; Feng P; Li G Comput Methods Programs Biomed; 2020 Feb; 184():105278. PubMed ID: 31901634 [TBL] [Abstract][Full Text] [Related]
17. NLR, MLP, SVM, and LDA: a comparative analysis on EMG data from people with trans-radial amputation. Dellacasa Bellingegni A; Gruppioni E; Colazzo G; Davalli A; Sacchetti R; Guglielmelli E; Zollo L J Neuroeng Rehabil; 2017 Aug; 14(1):82. PubMed ID: 28807038 [TBL] [Abstract][Full Text] [Related]
18. Spatio-Temporal Inertial Measurements Feature Extraction Improves Hand Movement Pattern Recognition without Electromyography. Khushaba RN; Krasoulis A; Al-Jumaily A; Nazarpour K Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2108-2111. PubMed ID: 30440819 [TBL] [Abstract][Full Text] [Related]
19. Protocol for site selection and movement assessment for the myoelectric control of a multi-functional upper-limb prosthesis. Al-Timemy AH; Escudero J; Bugmann G; Outram N Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5817-20. PubMed ID: 24111061 [TBL] [Abstract][Full Text] [Related]
20. Intuitive real-time control strategy for high-density myoelectric hand prosthesis using deep and transfer learning. Tam S; Boukadoum M; Campeau-Lecours A; Gosselin B Sci Rep; 2021 May; 11(1):11275. PubMed ID: 34050220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]