These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
522 related articles for article (PubMed ID: 31652616)
21. EMG and ENG-envelope pattern recognition for prosthetic hand control. Noce E; Dellacasa Bellingegni A; Ciancio AL; Sacchetti R; Davalli A; Guglielmelli E; Zollo L J Neurosci Methods; 2019 Jan; 311():38-46. PubMed ID: 30316891 [TBL] [Abstract][Full Text] [Related]
22. Influence of the weight actions of the hand prosthesis on the performance of pattern recognition based myoelectric control: preliminary study. Cipriani C; Sassu R; Controzzi M; Carrozza MC Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1620-3. PubMed ID: 22254633 [TBL] [Abstract][Full Text] [Related]
23. A multifunctional prosthesis control system based on time series identification of EMG signals using microprocessors. Graupe D; Beex AA; Monlux WJ; Magnussen I Bull Prosthet Res; 1977; 10(27):4-16. PubMed ID: 603818 [TBL] [Abstract][Full Text] [Related]
24. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation. Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794 [TBL] [Abstract][Full Text] [Related]
25. Voluntary phantom hand and finger movements in transhumerai amputees could be used to naturally control polydigital prostheses. Jarrasse N; Nicol C; Richer F; Touillet A; Martinet N; Paysant J; De Graaf JB IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1239-1245. PubMed ID: 28813991 [TBL] [Abstract][Full Text] [Related]
26. A preliminary investigation of the effect of force variation for myoelectric control of hand prosthesis. Al-Timemy AH; Bugmann G; Escudero J; Outram N Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5758-61. PubMed ID: 24111046 [TBL] [Abstract][Full Text] [Related]
27. Myoelectric control of robotic lower limb prostheses: a review of electromyography interfaces, control paradigms, challenges and future directions. Fleming A; Stafford N; Huang S; Hu X; Ferris DP; Huang HH J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229307 [No Abstract] [Full Text] [Related]
28. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. Young AJ; Kuiken TA; Hargrove LJ J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111 [TBL] [Abstract][Full Text] [Related]
29. Towards the control of individual fingers of a prosthetic hand using surface EMG signals. Tenore F; Ramos A; Fahmy A; Acharya S; Etienne-Cummings R; Thakor NV Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6146-9. PubMed ID: 18003418 [TBL] [Abstract][Full Text] [Related]
30. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis. Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418 [TBL] [Abstract][Full Text] [Related]
31. Dynamic time warping for reducing the effect of force variation on myoelectric control of hand prostheses. Powar OS; Chemmangat K J Electromyogr Kinesiol; 2019 Oct; 48():152-160. PubMed ID: 31357113 [TBL] [Abstract][Full Text] [Related]
32. Real-time classification of shoulder girdle motions for multifunctional prosthetic hand control: A preliminary study. Sharba GK; Wali MK; Ai-Timemy AH Int J Artif Organs; 2019 Sep; 42(9):508-515. PubMed ID: 31117860 [TBL] [Abstract][Full Text] [Related]
33. Classification of Transient Myoelectric Signals for the Control of Multi-Grasp Hand Prostheses. Kanitz G; Cipriani C; Edin BB IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1756-1764. PubMed ID: 30072331 [TBL] [Abstract][Full Text] [Related]
34. Improving transient state myoelectric signal recognition in hand movement classification using gyroscopes. Boschmann A; Nofen B; Platzner M Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6035-8. PubMed ID: 24111115 [TBL] [Abstract][Full Text] [Related]
35. Influence of multiple dynamic factors on the performance of myoelectric pattern recognition. Khushaba RN; Al-Timemy A; Kodagoda S Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1679-82. PubMed ID: 26736599 [TBL] [Abstract][Full Text] [Related]
36. A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts' law style assessment procedure. Wurth SM; Hargrove LJ J Neuroeng Rehabil; 2014 May; 11():91. PubMed ID: 24886664 [TBL] [Abstract][Full Text] [Related]
37. Targeted muscle reinnervation to improve electromyography signals for advanced myoelectric prosthetic limbs: a series of seven patients. Myers H; Lu D; Gray SJ; Bruscino-Raiola F ANZ J Surg; 2020 Apr; 90(4):591-596. PubMed ID: 31989741 [TBL] [Abstract][Full Text] [Related]
38. Resolving the adverse impact of mobility on myoelectric pattern recognition in upper-limb multifunctional prostheses. Samuel OW; Li X; Geng Y; Asogbon MG; Fang P; Huang Z; Li G Comput Biol Med; 2017 Nov; 90():76-87. PubMed ID: 28961473 [TBL] [Abstract][Full Text] [Related]
39. Motion recognition for simultaneous control of multifunctional transradial prostheses. Jiang N; Tian L; Fang P; Dai Y; Li G Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1603-6. PubMed ID: 24110009 [TBL] [Abstract][Full Text] [Related]