These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
522 related articles for article (PubMed ID: 31652616)
41. Online myoelectric control of a dexterous hand prosthesis by transradial amputees. Cipriani C; Antfolk C; Controzzi M; Lundborg G; Rosen B; Carrozza MC; Sebelius F IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):260-70. PubMed ID: 21292599 [TBL] [Abstract][Full Text] [Related]
42. Evaluating the Ability of Congenital Upper Extremity Amputees to Control a Multi-Degree of Freedom Myoelectric Prosthesis. Kaluf B; Gart MS; Loeffler BJ; Gaston G J Hand Surg Am; 2022 Oct; 47(10):1019.e1-1019.e9. PubMed ID: 34657765 [TBL] [Abstract][Full Text] [Related]
43. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control. Huang S; Wensman JP; Ferris DP IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851 [TBL] [Abstract][Full Text] [Related]
44. Real-time myoelectric decoding of individual finger movements for a virtual target task. Smith RJ; Huberdeau D; Tenore F; Thakor NV Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2376-9. PubMed ID: 19965192 [TBL] [Abstract][Full Text] [Related]
45. Conditioning and sampling issues of EMG signals in motion recognition of multifunctional myoelectric prostheses. Li G; Li Y; Yu L; Geng Y Ann Biomed Eng; 2011 Jun; 39(6):1779-87. PubMed ID: 21293972 [TBL] [Abstract][Full Text] [Related]
46. Spatially Filtered Low-Density EMG and Time-Domain Descriptors Improves Hand Movement Recognition. Al Taee AA; Khushaba RN; Al-Jumaily A Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2671-2674. PubMed ID: 31946445 [TBL] [Abstract][Full Text] [Related]
47. Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis. Tkach DC; Lipschutz RD; Finucane SB; Hargrove LJ IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650499. PubMed ID: 24187314 [TBL] [Abstract][Full Text] [Related]
48. A strategy for minimizing the effect of misclassifications during real time pattern recognition myoelectric control. Simon AM; Hargrove LJ; Lock BA; Kuiken TA Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1327-30. PubMed ID: 19964513 [TBL] [Abstract][Full Text] [Related]
49. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Reciprocal Activation, Coactivation, and Implications for Direct Neural Control of Powered Lower Limb Prostheses. Huang S; Huang H IEEE Trans Neural Syst Rehabil Eng; 2019 Jan; 27(1):85-95. PubMed ID: 30530332 [TBL] [Abstract][Full Text] [Related]
50. First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. Pasquina PF; Evangelista M; Carvalho AJ; Lockhart J; Griffin S; Nanos G; McKay P; Hansen M; Ipsen D; Vandersea J; Butkus J; Miller M; Murphy I; Hankin D J Neurosci Methods; 2015 Apr; 244():85-93. PubMed ID: 25102286 [TBL] [Abstract][Full Text] [Related]
51. Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions. Waris A; Niazi IK; Jamil M; Englehart K; Jensen W; Kamavuako EN IEEE J Biomed Health Inform; 2019 Jul; 23(4):1526-1534. PubMed ID: 30106701 [TBL] [Abstract][Full Text] [Related]
52. Myoelectric Pattern Recognition Outperforms Direct Control for Transhumeral Amputees with Targeted Muscle Reinnervation: A Randomized Clinical Trial. Hargrove LJ; Miller LA; Turner K; Kuiken TA Sci Rep; 2017 Oct; 7(1):13840. PubMed ID: 29062019 [TBL] [Abstract][Full Text] [Related]
53. Pattern recognition control of multifunction myoelectric prostheses by patients with congenital transradial limb defects: a preliminary study. Kryger M; Schultz AE; Kuiken T Prosthet Orthot Int; 2011 Dec; 35(4):395-401. PubMed ID: 21960053 [TBL] [Abstract][Full Text] [Related]
54. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control. Adewuyi AA; Hargrove LJ; Kuiken TA IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):485-94. PubMed ID: 25955989 [TBL] [Abstract][Full Text] [Related]
55. Gesture Recognition Using Surface Electromyography and Deep Learning for Prostheses Hand: State-of-the-Art, Challenges, and Future. Li W; Shi P; Yu H Front Neurosci; 2021; 15():621885. PubMed ID: 33981195 [TBL] [Abstract][Full Text] [Related]
56. Restoration of grasping in an upper limb amputee using the myokinetic prosthesis with implanted magnets. Gherardini M; Ianniciello V; Masiero F; Paggetti F; D'Accolti D; La Frazia E; Mani O; Dalise S; Dejanovic K; Fragapane N; Maggiani L; Ipponi E; Controzzi M; Nicastro M; Chisari C; Andreani L; Cipriani C Sci Robot; 2024 Sep; 9(94):eadp3260. PubMed ID: 39259781 [TBL] [Abstract][Full Text] [Related]
57. Prosthesis-guided training of pattern recognition-controlled myoelectric prosthesis. Chicoine CL; Simon AM; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1876-9. PubMed ID: 23366279 [TBL] [Abstract][Full Text] [Related]
58. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis. Dosen S; Markovic M; Somer K; Graimann B; Farina D J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323 [TBL] [Abstract][Full Text] [Related]
59. Limb Position Tolerant Pattern Recognition for Myoelectric Prosthesis Control with Adaptive Sparse Representations From Extreme Learning. Betthauser JL; Hunt CL; Osborn LE; Masters MR; Levay G; Kaliki RR; Thakor NV IEEE Trans Biomed Eng; 2018 Apr; 65(4):770-778. PubMed ID: 28650804 [TBL] [Abstract][Full Text] [Related]
60. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features. Khushaba RN; Takruri M; Miro JV; Kodagoda S Neural Netw; 2014 Jul; 55():42-58. PubMed ID: 24721224 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]