These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31652625)

  • 1. A Method for the Structure-Based, Genome-Wide Analysis of Bacterial Intergenic Sequences Identifies Shared Compositional and Functional Features.
    Lenzini L; Di Patti F; Livi R; Fondi M; Fani R; Mengoni A
    Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31652625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Junker: an intergenic explorer for bacterial genomes.
    Sridhar J; Sabarinathan R; Balan SS; Rafi ZA; Gunasekaran P; Sekar K
    Genomics Proteomics Bioinformatics; 2011 Oct; 9(4-5):179-82. PubMed ID: 22196361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trichodesmium genome maintains abundant, widespread noncoding DNA in situ, despite oligotrophic lifestyle.
    Walworth N; Pfreundt U; Nelson WC; Mincer T; Heidelberg JF; Fu F; Waterbury JB; Glavina del Rio T; Goodwin L; Kyrpides NC; Land ML; Woyke T; Hutchins DA; Hess WR; Webb EA
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4251-6. PubMed ID: 25831533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding keywords for intergenic and gene regions for human genome.
    Qiao YH; Liu JL; Zhang CG; Zeng Y
    Nucleosides Nucleotides Nucleic Acids; 2005; 24(3):191-8. PubMed ID: 15892258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorting Permutations by Intergenic Operations.
    Oliveira AR; Jean G; Fertin G; Brito KL; Dias U; Dias Z
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2080-2093. PubMed ID: 33945484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. sRNAPredict: an integrative computational approach to identify sRNAs in bacterial genomes.
    Livny J; Fogel MA; Davis BM; Waldor MK
    Nucleic Acids Res; 2005; 33(13):4096-105. PubMed ID: 16049021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining Functional Genic Regions in the Human Genome through Integration of Biochemical, Evolutionary, and Genetic Evidence.
    Tsai ZT; Lloyd JP; Shiu SH
    Mol Biol Evol; 2017 Jul; 34(7):1788-1798. PubMed ID: 28398576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenetic Comparison of Prokaryotic Genomes Using k-mers.
    Déraspe M; Raymond F; Boisvert S; Culley A; Roy PH; Laviolette F; Corbeil J
    Mol Biol Evol; 2017 Oct; 34(10):2716-2729. PubMed ID: 28957508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic data analysis using DNA structure: an analysis of conserved nongenic sequences and ultraconserved elements.
    Gardiner EJ; Hirons L; Hunter CA; Willett P
    J Chem Inf Model; 2006; 46(2):753-61. PubMed ID: 16563006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative genomic workflow: discovery of conserved noncoding DNA patterns.
    Rajapakse J; Pooja ; Chen C; Ho SL
    IEEE Eng Med Biol Mag; 2009; 28(4):19-24. PubMed ID: 19622420
    [No Abstract]   [Full Text] [Related]  

  • 11. Coding DNA repeated throughout intergenic regions of the Arabidopsis thaliana genome: evolutionary footprints of RNA silencing.
    Feng J; Naiman DQ; Cooper B
    Mol Biosyst; 2009 Dec; 5(12):1679-87. PubMed ID: 19452047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A versatile computational pipeline for bacterial genome annotation improvement and comparative analysis, with Brucella as a use case.
    Yu GX; Snyder EE; Boyle SM; Crasta OR; Czar M; Mane SP; Purkayastha A; Sobral B; Setubal JC
    Nucleic Acids Res; 2007; 35(12):3953-62. PubMed ID: 17553834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realistic artificial DNA sequences as negative controls for computational genomics.
    Caballero J; Smit AF; Hood L; Glusman G
    Nucleic Acids Res; 2014 Jul; 42(12):e99. PubMed ID: 24803667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategy for genome sequencing analysis and assembly for comparative genomics of Pseudomonas genomes.
    Jeukens J; Boyle B; Tucker NP; Levesque RC
    Methods Mol Biol; 2014; 1149():565-77. PubMed ID: 24818933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative genomics of small RNAs in bacterial genomes.
    Luban S; Kihara D
    OMICS; 2007; 11(1):58-73. PubMed ID: 17411396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Annotating non-coding regions of the genome.
    Alexander RP; Fang G; Rozowsky J; Snyder M; Gerstein MB
    Nat Rev Genet; 2010 Aug; 11(8):559-71. PubMed ID: 20628352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Investigation of Promoter Sequences of Marseilleviruses Highlights a Remarkable Abundance of the AAATATTT Motif in Intergenic Regions.
    Oliveira GP; Lima MT; Arantes TS; Assis FL; Rodrigues RAL; da Fonseca FG; Bonjardim CA; Kroon EG; Colson P; La Scola B; Abrahão JS
    J Virol; 2017 Nov; 91(21):. PubMed ID: 28794030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ISQuest: finding insertion sequences in prokaryotic sequence fragment data.
    Biswas A; Gauthier DT; Ranjan D; Zubair M
    Bioinformatics; 2015 Nov; 31(21):3406-12. PubMed ID: 26116929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of common conserved sequences in mammalian intergenic regions.
    Kondrashov AS; Shabalina SA
    Hum Mol Genet; 2002 Mar; 11(6):669-74. PubMed ID: 11912182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MycoRRdb: a database of computationally identified regulatory regions within intergenic sequences in mycobacterial genomes.
    Midha M; Prasad NK; Vindal V
    PLoS One; 2012; 7(4):e36094. PubMed ID: 22563442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.