BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31652695)

  • 1. Characterization of Oxide Film of Implantable Metals by Electrochemical Impedance Spectroscopy.
    Okazaki Y
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31652695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparisons of immersion and electrochemical properties of highly biocompatible Ti-15Zr-4Nb-4Ta alloy and other implantable metals for orthopedic implants.
    Okazaki Y; Nagata H
    Sci Technol Adv Mater; 2012 Dec; 13(6):064216. PubMed ID: 27877543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological Safety Evaluation and Surface Modification of Biocompatible Ti-15Zr-4Nb Alloy.
    Okazaki Y; Katsuda SI
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33557312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of metal release from various metallic biomaterials in vitro.
    Okazaki Y; Gotoh E
    Biomaterials; 2005 Jan; 26(1):11-21. PubMed ID: 15193877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of spatial design and thermal oxidation on apatite formation on Ti-15Zr-4Ta-4Nb alloy.
    Sugino A; Ohtsuki C; Tsuru K; Hayakawa S; Nakano T; Okazaki Y; Osaka A
    Acta Biomater; 2009 Jan; 5(1):298-304. PubMed ID: 18706879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface analysis of Ti-15Zr-4Nb-4Ta alloy after implantation in rat tibia.
    Okazak Y; Nishimura E; Nakada H; Kobayashi K
    Biomaterials; 2001 Mar; 22(6):599-607. PubMed ID: 11219725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of metal concentrations in rat tibia tissues with various metallic implants.
    Okazaki Y; Gotoh E; Manabe T; Kobayashi K
    Biomaterials; 2004 Dec; 25(28):5913-20. PubMed ID: 15183605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of friction on anodic polarization properties of metallic biomaterials.
    Okazaki Y
    Biomaterials; 2002 May; 23(9):2071-7. PubMed ID: 11996049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys.
    Ito A; Okazaki Y; Tateishi T; Ito Y
    J Biomed Mater Res; 1995 Jul; 29(7):893-9. PubMed ID: 7593029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical impedance spectroscopy study of Ti-6Al-4V alloy in artificial saliva with fluoride and/or bovine albumin.
    Huang HH; Lee TH
    Dent Mater; 2005 Aug; 21(8):749-55. PubMed ID: 15878783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of bioactive Ti-15Zr-4Nb-4Ta alloy from HCl and heat treatments after an NaOH treatment.
    Yamaguchi S; Takadama H; Matsushita T; Nakamura T; Kokubo T
    J Biomed Mater Res A; 2011 May; 97(2):135-44. PubMed ID: 21370443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments.
    Yamaguchi S; Hashimoto H; Nakai R; Takadama H
    Materials (Basel); 2017 Sep; 10(10):. PubMed ID: 28946646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative corrosion study of Ti-Ta alloys for dental applications.
    Mareci D; Chelariu R; Gordin DM; Ungureanu G; Gloriant T
    Acta Biomater; 2009 Nov; 5(9):3625-39. PubMed ID: 19508903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ti-15Zr and Ti-15Zr-5Mo Biomaterials Alloys: An Analysis of Corrosion and Tribocorrosion Behavior in Phosphate-Buffered Saline Solution.
    Santos AA; Teixeira JVU; Pintão CAF; Correa DRN; Grandini CR; Lisboa-Filho PN
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Performance of Artificial Hip Stems Manufactured by Hot Forging and Selective Laser Melting Using Biocompatible Ti-15Zr-4Nb Alloy.
    Okazaki Y; Mori J
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33557357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenomena of nanotube nucleation and growth on new ternary titanium alloys.
    Choe HC; Jeong YH; Brantley WA
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4684-9. PubMed ID: 21128479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.
    Oliveira NT; Guastaldi AC
    Acta Biomater; 2009 Jan; 5(1):399-405. PubMed ID: 18707926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ surface electrochemical characterizations of Ti and Ti-6Al-4V alloy cultured with osteoblast-like cells.
    Huang HH
    Biochem Biophys Res Commun; 2004 Feb; 314(3):787-92. PubMed ID: 14741704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical characterization of albumin protein on Ti-6AL-4V alloy immersed in a simulated plasma solution.
    Padilla N; Bronson A
    J Biomed Mater Res A; 2007 Jun; 81(3):531-43. PubMed ID: 17133449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical characterization of MC3T3-E1 cells cultured on γTiAl and Ti-6Al-4V alloys.
    Bueno-Vera JA; Torres-Zapata I; Sundaram PA; Diffoot-Carlo N; Vega-Olivencia CA
    Bioelectrochemistry; 2015 Dec; 106(Pt B):316-27. PubMed ID: 26145813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.