BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31652764)

  • 1. Docosahexaenoic Acid Inhibits PTP1B Phosphatase and the Viability of MCF-7 Breast Cancer Cells.
    Kuban-Jankowska A; Gorska-Ponikowska M; Sahu KK; Kostrzewa T; Wozniak M; Tuszynski J
    Nutrients; 2019 Oct; 11(11):. PubMed ID: 31652764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of small peptide compounds, molecular docking, and inhibitory activity evaluation against phosphatases PTP1B and SHP2.
    Kostrzewa T; Sahu KK; Gorska-Ponikowska M; Tuszynski JA; Kuban-Jankowska A
    Drug Des Devel Ther; 2018; 12():4139-4147. PubMed ID: 30584278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PTP1B phosphatase as a novel target of oleuropein activity in MCF-7 breast cancer model.
    Przychodzen P; Kuban-Jankowska A; Wyszkowska R; Barone G; Bosco GL; Celso FL; Kamm A; Daca A; Kostrzewa T; Gorska-Ponikowska M
    Toxicol In Vitro; 2019 Dec; 61():104624. PubMed ID: 31419504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipoic Acid Decreases the Viability of Breast Cancer Cells and Activity of PTP1B and SHP2.
    Kuban-Jankowska A; Gorska-Ponikowska M; Wozniak M
    Anticancer Res; 2017 Jun; 37(6):2893-2898. PubMed ID: 28551626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory Activity of Iron Chelators ATA and DFO on MCF-7 Breast Cancer Cells and Phosphatases PTP1B and SHP2.
    Kuban-Jankowska A; Sahu KK; Gorska-Ponikowska M; Tuszynski JA; Wozniak M
    Anticancer Res; 2017 Sep; 37(9):4799-4806. PubMed ID: 28870898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docosahexaenoic acid reduces sterol regulatory element binding protein-1 and fatty acid synthase expression and inhibits cell proliferation by inhibiting pAkt signaling in a human breast cancer MCF-7 cell line.
    Huang LH; Chung HY; Su HM
    BMC Cancer; 2017 Dec; 17(1):890. PubMed ID: 29282029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Docosahexaenoic Acid on Cell Cycle Pathways in Breast Cell Lines With Different Transformation Degree.
    Rescigno T; Capasso A; Tecce MF
    J Cell Physiol; 2016 Jun; 231(6):1226-36. PubMed ID: 26480024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein tyrosine phosphatase 1B expression contributes to the development of breast cancer.
    Liao SC; Li JX; Yu L; Sun SR
    J Zhejiang Univ Sci B; 2017 Apr.; 18(4):334-342. PubMed ID: 28378571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of matrix metalloproteinase-9 expression by docosahexaenoic acid mediated by heme oxygenase 1 in 12-O-tetradecanoylphorbol-13-acetate-induced MCF-7 human breast cancer cells.
    Chen HW; Chao CY; Lin LL; Lu CY; Liu KL; Lii CK; Li CC
    Arch Toxicol; 2013 May; 87(5):857-69. PubMed ID: 23288142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Omega-3 Polyunsaturated Fatty Acids Time-Dependently Reduce Cell Viability and Oncogenic MicroRNA-21 Expression in Estrogen Receptor-Positive Breast Cancer Cells (MCF-7).
    LeMay-Nedjelski L; Mason-Ennis JK; Taibi A; Comelli EM; Thompson LU
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29342901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curcumin and Cinnamaldehyde as PTP1B Inhibitors With Antidiabetic and Anticancer Potential.
    Kostrzewa T; Przychodzen P; Gorska-Ponikowska M; Kuban-Jankowska A
    Anticancer Res; 2019 Feb; 39(2):745-749. PubMed ID: 30711953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel biologically active acid stable liposomal formulation of docosahexaenoic acid in human breast cancer cell lines.
    Skibinski CG; Das A; Chen KM; Liao J; Manni A; Kester M; El-Bayoumy K
    Chem Biol Interact; 2016 May; 252():1-8. PubMed ID: 27041074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curcumin and Its New Derivatives: Correlation between Cytotoxicity against Breast Cancer Cell Lines, Degradation of PTP1B Phosphatase and ROS Generation.
    Kostrzewa T; Wołosewicz K; Jamrozik M; Drzeżdżon J; Siemińska J; Jacewicz D; Górska-Ponikowska M; Kołaczkowski M; Łaźny R; Kuban-Jankowska A
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein tyrosine phosphatase-1B and T-cell protein tyrosine phosphatase regulate IGF-2-induced MCF-7 cell migration.
    Blanquart C; Karouri SE; Issad T
    Biochem Biophys Res Commun; 2010 Jan; 392(1):83-8. PubMed ID: 20059965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implication of protein tyrosine phosphatase 1B in MCF-7 cell proliferation and resistance to 4-OH tamoxifen.
    Blanquart C; Karouri SE; Issad T
    Biochem Biophys Res Commun; 2009 Oct; 387(4):748-53. PubMed ID: 19635455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid-based nanocarriers co-loaded with artemether and triglycerides of docosahexaenoic acid: Effects on human breast cancer cells.
    Lanna EG; Siqueira RP; Machado MGC; de Souza A; Trindade IC; Branquinho RT; Mosqueira VCF
    Biomed Pharmacother; 2021 Feb; 134():111114. PubMed ID: 33352447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein Tyrosine Phosphatase 1B Inhibitors from the Stems of Akebia quinata.
    An JP; Ha TK; Kim J; Cho TO; Oh WK
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27548130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exogenous supplementation with omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA; 22:6n-3) synergistically enhances taxane cytotoxicity and downregulates Her-2/neu (c-erbB-2) oncogene expression in human breast cancer cells.
    Menendez JA; Lupu R; Colomer R
    Eur J Cancer Prev; 2005 Jun; 14(3):263-70. PubMed ID: 15901996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231.
    Mansara PP; Deshpande RA; Vaidya MM; Kaul-Ghanekar R
    PLoS One; 2015; 10(9):e0136542. PubMed ID: 26325577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estrogens and PTP1B function in a novel pathway to regulate aromatase enzymatic activity in breast cancer cells.
    Barone I; Giordano C; Malivindi R; Lanzino M; Rizza P; Casaburi I; Bonofiglio D; Catalano S; Andò S
    Endocrinology; 2012 Nov; 153(11):5157-66. PubMed ID: 22962253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.