These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 31652783)

  • 1. Cell Wall Proteins Play Critical Roles in Plant Adaptation to Phosphorus Deficiency.
    Wu W; Zhu S; Chen Q; Lin Y; Tian J; Liang C
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31652783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses.
    Guo W; Zhao J; Li X; Qin L; Yan X; Liao H
    Plant J; 2011 May; 66(3):541-52. PubMed ID: 21261763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of extracellular dNTP utilization with a GmPAP1-like protein identified in cell wall proteomic analysis of soybean roots.
    Wu W; Lin Y; Liu P; Chen Q; Tian J; Liang C
    J Exp Bot; 2018 Jan; 69(3):603-617. PubMed ID: 29329437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feeding the Walls: How Does Nutrient Availability Regulate Cell Wall Composition?
    Ogden M; Hoefgen R; Roessner U; Persson S; Khan GA
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30201905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root developmental adaptation to phosphate starvation: better safe than sorry.
    Péret B; Clément M; Nussaume L; Desnos T
    Trends Plant Sci; 2011 Aug; 16(8):442-50. PubMed ID: 21684794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of root architecture development to low phosphorus availability: a review.
    Niu YF; Chai RS; Jin GL; Wang H; Tang CX; Zhang YS
    Ann Bot; 2013 Jul; 112(2):391-408. PubMed ID: 23267006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance.
    Kumar S; Pallavi ; Chugh C; Seem K; Kumar S; Vinod KK; Mohapatra T
    BMC Plant Biol; 2021 Jun; 21(1):282. PubMed ID: 34154533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pectin enhances rice (Oryza sativa) root phosphorus remobilization.
    Zhu XF; Wang ZW; Wan JX; Sun Y; Wu YR; Li GX; Shen RF; Zheng SJ
    J Exp Bot; 2015 Feb; 66(3):1017-24. PubMed ID: 25528599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological responses and transcriptomic changes reveal the mechanisms underlying adaptation of Stylosanthes guianensis to phosphorus deficiency.
    Chen Z; Song J; Li X; Arango J; Cardoso JA; Rao I; Schultze-Kraft R; Peters M; Mo X; Liu G
    BMC Plant Biol; 2021 Oct; 21(1):466. PubMed ID: 34645406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-translational modifications of plant cell wall proteins and peptides: A survey from a proteomics point of view.
    Canut H; Albenne C; Jamet E
    Biochim Biophys Acta; 2016 Aug; 1864(8):983-90. PubMed ID: 26945515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications.
    Paz-Ares J; Puga MI; Rojas-Triana M; Martinez-Hevia I; Diaz S; Poza-Carrión C; Miñambres M; Leyva A
    Mol Plant; 2022 Jan; 15(1):104-124. PubMed ID: 34954444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research Advances in the Mutual Mechanisms Regulating Response of Plant Roots to Phosphate Deficiency and Aluminum Toxicity.
    Chen W; Tang L; Wang J; Zhu H; Jin J; Yang J; Fan W
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and Analysis of Cell Wall Proteome in Elsholtzia splendens Roots Using ITRAQ with LC-ESI-MS/MS.
    Liu T; Huang C; Shen C; Shi J
    Appl Biochem Biotechnol; 2015 Jun; 176(4):1174-94. PubMed ID: 25926012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arabidopsis thaliana mutant lpsi reveals impairment in the root responses to local phosphate availability.
    Karthikeyan AS; Jain A; Nagarajan VK; Sinilal B; Sahi SV; Raghothama KG
    Plant Physiol Biochem; 2014 Apr; 77():60-72. PubMed ID: 24561248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Impact of Phosphorus on Plant Immunity.
    Chan C; Liao YY; Chiou TJ
    Plant Cell Physiol; 2021 Sep; 62(4):582-589. PubMed ID: 33399863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short on phosphate: plant surveillance and countermeasures.
    Ticconi CA; Abel S
    Trends Plant Sci; 2004 Nov; 9(11):548-55. PubMed ID: 15501180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypes and Molecular Mechanisms Underlying the Root Response to Phosphate Deprivation in Plants.
    Ren M; Li Y; Zhu J; Zhao K; Wu Z; Mao C
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation to Phosphate Scarcity: Tips from Arabidopsis Roots.
    Gutiérrez-Alanís D; Ojeda-Rivera JO; Yong-Villalobos L; Cárdenas-Torres L; Herrera-Estrella L
    Trends Plant Sci; 2018 Aug; 23(8):721-730. PubMed ID: 29764728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative expression profiling reveals a role of the root apoplast in local phosphate response.
    Hoehenwarter W; Mönchgesang S; Neumann S; Majovsky P; Abel S; Müller J
    BMC Plant Biol; 2016 Apr; 16():106. PubMed ID: 27121119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency.
    Sánchez-Calderón L; López-Bucio J; Chacón-López A; Gutiérrez-Ortega A; Hernández-Abreu E; Herrera-Estrella L
    Plant Physiol; 2006 Mar; 140(3):879-89. PubMed ID: 16443695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.