These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31653069)

  • 1. Investigation on Fatigue Threshold Testing Methods in a Near Lamellar TiAl Alloy.
    Wang S; Li H; Bowen P
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31653069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Heat Treatment on Microstructures and Mechanical Properties of a Novel β-Solidifying TiAl Alloy.
    Cui N; Wu Q; Bi K; Xu T; Kong F
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31126013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Model for Creep and Creep Damage in the γ-Titanium Aluminide Ti-45Al-2Mn-2Nb.
    Harrison W; Abdallah Z; Whittaker M
    Materials (Basel); 2014 Mar; 7(3):2194-2209. PubMed ID: 28788563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sliding Wear Behavior of Intermetallic Ti-45Al-2Nb-2Mn-(at%)-0.8vol%TiB
    Shagñay S; Cornide J; Ruiz-Navas EM
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Multi-Directional Forging on the Microstructure and Mechanical Properties of β-Solidifying TiAl Alloy.
    Cui N; Wu Q; Bi K; Wang J; Xu T; Kong F
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of post-sintering heat treatments on the fatigue properties of porous coated Ti-6Al-4V alloy.
    Cook SD; Thongpreda N; Anderson RC; Haddad RJ
    J Biomed Mater Res; 1988 Apr; 22(4):287-302. PubMed ID: 3372550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructural Evolution and Mechanical Properties of an Advanced γ-TiAl Based Alloy Processed by Spark Plasma Sintering.
    Wimler D; Lindemann J; Clemens H; Mayer S
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31075938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of Fatigue Crack Growth in Biomedical Alloy Ti-27Nb.
    Amjad M; Badshah S; Rafique AF; Adil Khattak M; Khan RU; Abdullah Harasani WI
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot Deformation Behavior and Microstructural Evolution of a Novel β-Solidifying Ti-43Al-3Mn-2Nb-0.1Y Alloy.
    Wu Q; Cui N; Xiao X; Wang X; Zhao E
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31284560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Directional Solidification, Microstructural Characterization and Deformation Behavior of β-Solidifying TiAl Alloy.
    Cui N; Wu Q; Wang J; Lv B; Kong F
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ti
    Song X; Cui H; Han Y; Ding L; Song Q
    ACS Appl Mater Interfaces; 2018 May; 10(19):16783-16792. PubMed ID: 29688692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure Sensitivity on Environmental Embrittlement of a High Nb Containing TiAl Alloy under Different Atmospheres.
    Zhang F; Wu Z; Zhang T; Hu R; Wang X
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36500009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Advanced TiAl Alloy for High-Performance Racing Applications.
    Burtscher M; Klein T; Lindemann J; Lehmann O; Fellmann H; Güther V; Clemens H; Mayer S
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33105858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructural Characterization by Automated Crystal Orientation and Phase Mapping by Precession Electron Diffraction in TEM: Application to Hot Deformation of a
    Singh V; Mondal C; Bhattacharjee PP; Ghosal P
    Microsc Microanal; 2019 Dec; 25(6):1457-1465. PubMed ID: 30973126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effects of Hot-Pack Coating Materials on the Pack Rolling Process and Microstructural Characteristics during Ti-46Al-8Nb Sheet Fabrication.
    Huang H; Liao M; Yu Q; Liu G; Wang Z
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32046076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of build direction dependent grain structure on fatigue crack growth of biomedical Co-29Cr-6Mo alloy processed by laser powder bed fusion.
    Anuar A; Guraya T; Chen ZW; Ramezani M; San Sebastián-Ormazabal M
    J Mech Behav Biomed Mater; 2021 Nov; 123():104741. PubMed ID: 34461399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on the Fatigue Crack Propagation of Medium-Entropy Alloys with Heterogeneous Microstructures.
    Liu Y; Jiang P; Duan G; Wang J; Zhou L; Xie J
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Underload Cycles on Oxide-Induced Crack Closure Development in Cr-Mo Low-Alloy Steel.
    Pokorný P; Vojtek T; Jambor M; Náhlík L; Hutař P
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34068046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Precipitate Microstructure Affecting Fatigue Behavior of 7020 Aluminum Alloy.
    Shan Z; Liu S; Ye L; Li Y; He C; Chen J; Tang J; Deng Y; Zhang X
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32707847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects.
    Robertson SW; Ritchie RO
    Biomaterials; 2007 Feb; 28(4):700-9. PubMed ID: 17034845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.