These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31653267)

  • 1. Influence of cancellous bone microstructure on ultrasonic attenuation: a theoretical prediction.
    Liu J; Lan L; Zhou J; Yang Y
    Biomed Eng Online; 2019 Oct; 18(1):103. PubMed ID: 31653267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of Interaction of Ultrasound With Cancellous Bone: A Review.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):454-482. PubMed ID: 31634127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variability in Ultrasound Backscatter Induced by Trabecular Microstructure Deterioration in Cancellous Bone.
    Chou X; Xu F; Li Y; Liu C; Ta D; Le LH
    Biomed Res Int; 2018; 2018():4786329. PubMed ID: 29780823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scattering of ultrasound in cancellous bone: predictions from a theoretical model.
    Nicholson PH; Strelitzki R; Cleveland RO; Bouxsein ML
    J Biomech; 2000 Apr; 33(4):503-6. PubMed ID: 10768401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships of Ultrasonic Backscatter With Bone Densities and Microstructure in Bovine Cancellous Bone.
    Liu C; Li B; Diwu Q; Li Y; Zhang R; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2311-2321. PubMed ID: 30575524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Backscatter measurement of cancellous bone using the ultrasound transit time spectroscopy.
    Jia Y; Han S; Li B; Liu C; Ta D
    J Acoust Soc Am; 2024 Apr; 155(4):2670-2686. PubMed ID: 38639562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a polymer, open-cell rigid foam that simulates the ultrasonic properties of cancellous bone.
    Hoffmeister BK; Huber MT; Viano AM; Huang J
    J Acoust Soc Am; 2018 Feb; 143(2):911. PubMed ID: 29495707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of charge density on the velocity and attenuation of ultrasound waves in human cancellous bone.
    Yoon YJ
    J Biomech; 2018 Oct; 79():54-57. PubMed ID: 30122518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical investigation of ultrasonic attenuation through 2D trabecular bone structures reconstructed from CT scans and random realizations.
    Gilbert RP; Guyenne P; Li J
    Comput Biol Med; 2014 Feb; 45():143-56. PubMed ID: 24480174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractal dimension predicts broadband ultrasound attenuation in stereolithography models of cancellous bone.
    Langton CM; Whitehead MA; Haire TJ; Hodgskinson R
    Phys Med Biol; 1998 Feb; 43(2):467-71. PubMed ID: 9509539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic characterization of human trabecular bone microstructure.
    Hakulinen MA; Day JS; Töyräs J; Weinans H; Jurvelin JS
    Phys Med Biol; 2006 Mar; 51(6):1633-48. PubMed ID: 16510968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic Bone Assessment: Ability of Apparent Backscatter Techniques to Detect Changes in the Microstructure of Human Cancellous Bone.
    Viano AM; Ankersen JP; Hoffmeister BK; Huang J; Fairbanks LC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3309-3325. PubMed ID: 34138705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dependence of broadband ultrasound attenuation on phase interference in thin plates of variable thickness and curvature: a comparison of experimental measurement and computer simulation.
    Alomari AH; Wille ML; Langton CM
    Proc Inst Mech Eng H; 2018 May; 232(5):468-478. PubMed ID: 29589802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic backscatter difference measurements of cancellous bone from the human femur: Relation to bone mineral density and microstructure.
    Hoffmeister BK; Viano AM; Huang J; Fairbanks LC; Ebron SC; Moore JT; Ankersen JP; Huber MT; Diaz AA
    J Acoust Soc Am; 2018 Jun; 143(6):3642. PubMed ID: 29960442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Structural Anisotropy in a Porous Titanium Medium Mimicking Trabecular Bone Structure Using Mode-Converted Ultrasonic Scattering.
    Du H; Yousefian O; Horn T; Muller M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 May; 67(5):1017-1024. PubMed ID: 31940527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic slow waves in air-saturated cancellous bone.
    Nicholson PH; Strelitzki R
    Ultrasonics; 1999 Sep; 37(6):445-9. PubMed ID: 10579032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving broadband ultrasound attenuation assessment in cancellous bone by mitigating the influence of cortical bone: Phantom and in-vitro study.
    Tasinkevych Y; Falińska K; Lewin PA; Litniewski J
    Ultrasonics; 2019 Apr; 94():382-390. PubMed ID: 30001852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analysis of variability in ultrasound propagation properties induced by trabecular microstructure in cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):738-47. PubMed ID: 19406702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency dependence of the ultrasonic power reflected from the water-tissue interface of human cancellous bone in vitro.
    Hoffmeister BK; Main EN; Newman WR; Ebron SC; Huang J
    J Acoust Soc Am; 2022 Oct; 152(4):2082. PubMed ID: 36319263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic wave propagation in bovine cancellous bone: application of the Modified Biot-Attenborough model.
    Lee KI; Roh HS; Yoon SW
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2284-93. PubMed ID: 14587625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.