These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31653267)

  • 21. Effect of porosity distribution in the propagation direction on ultrasound waves through cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1320-8. PubMed ID: 20529708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms for attenuation in cancellous-bone-mimicking phantoms.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2418-25. PubMed ID: 19049921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationships among ultrasonic and mechanical properties of cancellous bone in human calcaneus in vitro.
    Wear KA; Nagaraja S; Dreher ML; Sadoughi S; Zhu S; Keaveny TM
    Bone; 2017 Oct; 103():93-101. PubMed ID: 28666970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of the precision of spectral backscatter measurements on the estimation of scatterers size in cancellous bone.
    Padilla F; Jenson F; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e57-60. PubMed ID: 16904147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Backscatter-difference Measurements of Cancellous Bone Using an Ultrasonic Imaging System.
    Hoffmeister BK; Smathers MR; Miller CJ; McPherson JA; Thurston CR; Spinolo PL; Lee SR
    Ultrason Imaging; 2016 Jul; 38(4):285-97. PubMed ID: 26416839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scattering in Cancellous Bone.
    Wear K
    Adv Exp Med Biol; 2022; 1364():163-175. PubMed ID: 35508875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of acoustic characteristics predicted by Biot's theory and the modified Biot-Attenborough model in cancellous bone.
    Lee KI; Yoon SW
    J Biomech; 2006; 39(2):364-8. PubMed ID: 16321640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional Simulation of Quantitative Ultrasound in Cancellous Bone Using the Echographic Response of a Metallic Pin.
    Nagatani Y; Guipieri S; Nguyen VH; Chappard C; Geiger D; Naili S; Haїat G
    Ultrason Imaging; 2017 Sep; 39(5):295-312. PubMed ID: 28492108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of dense bovine cancellous bone tissue microstructure by ultrasonic backscattering using weak scattering models.
    Deligianni DD; Apostolopoulos KN
    J Acoust Soc Am; 2007 Aug; 122(2):1180-90. PubMed ID: 17672664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical and experimental study of attenuation in cancellous bone.
    Xu W; Xie W; Yu D; Sun H; Gu Y; Tao X; Qian M; Cheng L; Wang H; Cheng Q
    J Biomed Opt; 2024 Jan; 29(Suppl 1):S11526. PubMed ID: 38505736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of ultrasonic scattering in human cancellous bone by using a binary mixture model.
    Guo X; Zhang D; Gong X
    Phys Med Biol; 2007 Jan; 52(1):29-40. PubMed ID: 17183126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The non-linear relationship between BUA and porosity in cancellous bone.
    Hodgskinson R; Njeh CF; Whitehead MA; Langton CM
    Phys Med Biol; 1996 Nov; 41(11):2411-20. PubMed ID: 8938035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Ability of Ultrasonic Backscatter Parametric Imaging to Characterize Bovine Trabecular Bone.
    Li Y; Li B; Li Y; Liu C; Xu F; Zhang R; Ta D; Wang W
    Ultrason Imaging; 2019 Sep; 41(5):271-289. PubMed ID: 31307317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The in vitro measurement of ultrasound in cancellous bone.
    Langton CM; Hodgskinson R
    Stud Health Technol Inform; 1997; 40():175-99. PubMed ID: 10168878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasonic wave propagation in trabecular bone predicted by the stratified model.
    Lin W; Qin YX; Rubin C
    Ann Biomed Eng; 2001 Sep; 29(9):781-90. PubMed ID: 11599586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of microarchitecture alterations on ultrasonic backscattering in an experimental simulation of bovine cancellous bone aging.
    Apostolopoulos KN; Deligianni DD
    J Acoust Soc Am; 2008 Feb; 123(2):1179-87. PubMed ID: 18247917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone.
    Sasso M; Haïat G; Yamato Y; Naili S; Matsukawa M
    J Biomech; 2008; 41(2):347-55. PubMed ID: 18028934
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasonic Assessment of Cancellous Bone Based on the Two-Wave Phenomenon.
    Mizuno K; Nagatani Y; Mano I
    Adv Exp Med Biol; 2022; 1364():119-143. PubMed ID: 35508873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Golay improvement of the robustness of mean scatterer spacing measurement with ultrasonic backscattering.
    Pan W; Shen Y; Liu T; Wang Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S455-65. PubMed ID: 26406037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Ultrasonic wave propagation characteristics of cancellous bone].
    Otani T
    Clin Calcium; 2004 Dec; 14(12):69-75. PubMed ID: 15577177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.