BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31653347)

  • 1. Identification of glycated and acetylated lysine residues in human α2-antiplasmin.
    Bryk AH; Cysewski D; Dadlez M; Undas A
    Biochem Biophys Res Commun; 2020 Jan; 521(1):19-23. PubMed ID: 31653347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of glycated and acetylated human α2-antiplasmin with fibrin clots.
    Bryk AH; Satała D; Natorska J; Rąpała-Kozik M; Undas A
    Blood Coagul Fibrinolysis; 2020 Sep; 31(6):393-396. PubMed ID: 32815915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: a mass spectrometric and isotope labeling study.
    Svensson J; Bergman AC; Adamson U; Blombäck M; Wallén H; Jörneskog G
    Biochem Biophys Res Commun; 2012 May; 421(2):335-42. PubMed ID: 22507986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-enzymatic modifications of prostaglandin H synthase 1 affect bifunctional enzyme activity - Implications for the sensitivity of blood platelets to acetylsalicylic acid.
    Kassassir H; Siewiera K; Talar M; Stec-Martyna E; Pawlowska Z; Watala C
    Chem Biol Interact; 2016 Jun; 253():78-92. PubMed ID: 27083140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycation and acetylation sites on fibrinogen in plasma fibrin clot of patients with type 2 diabetes: Effects of low-dose acetylsalicylic acid.
    Bryk AH; Zettl K; Wiśniewski JR; Undas A
    Thromb Res; 2021 Feb; 198():93-98. PubMed ID: 33307284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of conserved lysine residues in the alpha2-antiplasmin C terminus to plasmin binding and inhibition.
    Lu BG; Sofian T; Law RH; Coughlin PB; Horvath AJ
    J Biol Chem; 2011 Jul; 286(28):24544-52. PubMed ID: 21543325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro glycation and acetylation (by aspirin) of rat crystallins.
    Cherian M; Abraham EC
    Life Sci; 1993; 52(21):1699-707. PubMed ID: 8502115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the specific interaction between the lysine-binding sites in plasmin and complementary sites in alpha2-antiplasmin and in fibrinogen.
    Wiman B; Lijnen HR; Collen D
    Biochim Biophys Acta; 1979 Jul; 579(1):142-54. PubMed ID: 157166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased protein glycation in diabetes mellitus is associated with decreased aspirin-mediated protein acetylation and reduced sensitivity of blood platelets to aspirin.
    Watala C; Pluta J; Golanski J; Rozalski M; Czyz M; Trojanowski Z; Drzewoski J
    J Mol Med (Berl); 2005 Feb; 83(2):148-58. PubMed ID: 15723265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction of human alpha2-antiplasmin and plasmin stopped-flow fluorescence kinetics.
    Christensen U; Bangert K; Thorsen S
    FEBS Lett; 1996 May; 387(1):58-62. PubMed ID: 8654567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein regions important for plasminogen activation and inactivation of alpha2-antiplasmin in the surface protease Pla of Yersinia pestis.
    Kukkonen M; Lähteenmäki K; Suomalainen M; Kalkkinen N; Emödy L; Lång H; Korhonen TK
    Mol Microbiol; 2001 Jun; 40(5):1097-111. PubMed ID: 11401715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of amino acids in antiplasmin involved in its noncovalent 'lysine-binding-site'-dependent interaction with plasmin.
    Wang H; Yu A; Wiman B; Pap S
    Eur J Biochem; 2003 May; 270(9):2023-9. PubMed ID: 12709062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of the influences of aspirin-acetylation and glycation on human plasma proteins.
    Finamore F; Priego-Capote F; Nolli S; Zufferey A; Fontana P; Sanchez JC
    J Proteomics; 2015 Jan; 114():125-35. PubMed ID: 25464367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycation of interferon-beta-1b and human serum albumin in a lyophilized glucose formulation. Part III: application of proteomic analysis to the manufacture of biological drugs.
    Zheng X; Wu SL; Hancock WS
    Int J Pharm; 2006 Sep; 322(1-2):136-45. PubMed ID: 16920285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural heterogeneity of α2-antiplasmin: functional and clinical consequences.
    Abdul S; Leebeek FW; Rijken DC; Uitte de Willige S
    Blood; 2016 Feb; 127(5):538-45. PubMed ID: 26626994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of glycation of albumin and hemoglobin by acetylation in vitro and in vivo.
    Rendell M; Nierenberg J; Brannan C; Valentine JL; Stephen PM; Dodds S; Mercer P; Smith PK; Walder J
    J Lab Clin Med; 1986 Oct; 108(4):286-93. PubMed ID: 3760670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The acetylation of hemoglobin by aspirin. In vitro and in vivo.
    Bridges KR; Schmidt GJ; Jensen M; Cerami A; Bunn HF
    J Clin Invest; 1975 Jul; 56(1):201-7. PubMed ID: 237937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of modification sites in glycated crystallin in vitro and in vivo.
    Kielmas M; Kijewska M; Kluczyk A; Oficjalska J; Gołębiewska B; Stefanowicz P; Szewczuk Z
    Anal Bioanal Chem; 2015 Mar; 407(9):2557-67. PubMed ID: 25636230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Releasing the Brakes on the Fibrinolytic System in Pulmonary Emboli: Unique Effects of Plasminogen Activation and α2-Antiplasmin Inactivation.
    Singh S; Houng A; Reed GL
    Circulation; 2017 Mar; 135(11):1011-1020. PubMed ID: 28028005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural feature surrounding glycated lysine residues in human hemoglobin.
    Ito S; Nakahari T; Yamamoto D
    Biomed Res; 2011 Jun; 32(3):217-23. PubMed ID: 21673452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.