These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

587 related articles for article (PubMed ID: 31653573)

  • 1. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring.
    van Dijk LV; Van den Bosch L; Aljabar P; Peressutti D; Both S; J H M Steenbakkers R; Langendijk JA; Gooding MJ; Brouwer CL
    Radiother Oncol; 2020 Jan; 142():115-123. PubMed ID: 31653573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of atlas-based and deep learning methods for organs at risk delineation on head-and-neck CT images using an automated treatment planning system.
    Costea M; Zlate A; Durand M; Baudier T; Grégoire V; Sarrut D; Biston MC
    Radiother Oncol; 2022 Dec; 177():61-70. PubMed ID: 36328093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck.
    Teguh DN; Levendag PC; Voet PW; Al-Mamgani A; Han X; Wolf TK; Hibbard LS; Nowak P; Akhiat H; Dirkx ML; Heijmen BJ; Hoogeman MS
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(4):950-7. PubMed ID: 20932664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases.
    Wu X; Udupa JK; Tong Y; Odhner D; Pednekar GV; Simone CB; McLaughlin D; Apinorasethkul C; Apinorasethkul O; Lukens J; Mihailidis D; Shammo G; James P; Tiwari A; Wojtowicz L; Camaratta J; Torigian DA
    Med Image Anal; 2019 May; 54():45-62. PubMed ID: 30831357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-subject atlas-based auto-segmentation reduces interobserver variation and improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma: A multi-institution clinical study.
    Tao CJ; Yi JL; Chen NY; Ren W; Cheng J; Tung S; Kong L; Lin SJ; Pan JJ; Zhang GS; Hu J; Qi ZY; Ma J; Lu JD; Yan D; Sun Y
    Radiother Oncol; 2015 Jun; 115(3):407-11. PubMed ID: 26025546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images.
    Chen W; Li Y; Dyer BA; Feng X; Rao S; Benedict SH; Chen Q; Rong Y
    Radiat Oncol; 2020 Jul; 15(1):176. PubMed ID: 32690103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer.
    Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH
    Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. vOARiability: Interobserver and intermodality variability analysis in OAR contouring from head and neck CT and MR images.
    Podobnik G; Ibragimov B; Peterlin P; Strojan P; Vrtovec T
    Med Phys; 2024 Mar; 51(3):2175-2186. PubMed ID: 38230752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A clinical and time savings evaluation of a deep learning automatic contouring algorithm.
    Ginn JS; Gay HA; Hilliard J; Shah J; Mistry N; Möhler C; Hugo GD; Hao Y
    Med Dosim; 2023 Spring; 48(1):55-60. PubMed ID: 36550000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometric and dosimetric analysis of CT- and MR-based automatic contouring for the EPTN contouring atlas in neuro-oncology.
    Vaassen F; Zegers CML; Hofstede D; Wubbels M; Beurskens H; Verheesen L; Canters R; Looney P; Battye M; Gooding MJ; Compter I; Eekers DBP; van Elmpt W
    Phys Med; 2023 Oct; 114():103156. PubMed ID: 37813050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical evaluation of deep learning and atlas-based auto-segmentation for critical organs at risk in radiation therapy.
    Gibbons E; Hoffmann M; Westhuyzen J; Hodgson A; Chick B; Last A
    J Med Radiat Sci; 2023 Apr; 70 Suppl 2(Suppl 2):15-25. PubMed ID: 36148621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the Contouring Efficiency for Head and Neck Cancer Radiotherapy Using Atlas-based Auto-segmentation and Scripting.
    Nagayasu Y; Ohira S; Ikawa T; Masaoka A; Kanayama N; Nishi T; Kazunori T; Yoshino Y; Miyazaki M; Ueda Y; Konishi K
    In Vivo; 2024; 38(4):1712-1718. PubMed ID: 38936930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical evaluation of deep learning and atlas-based auto-segmentation for organs at risk delineation.
    Yamauchi R; Itazawa T; Kobayashi T; Kashiyama S; Akimoto H; Mizuno N; Kawamori J
    Med Dosim; 2024 Autumn; 49(3):167-176. PubMed ID: 38061916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center.
    D'Aviero A; Re A; Catucci F; Piccari D; Votta C; Piro D; Piras A; Di Dio C; Iezzi M; Preziosi F; Menna S; Quaranta F; Boschetti A; Marras M; Miccichè F; Gallus R; Indovina L; Bussu F; Valentini V; Cusumano D; Mattiucci GC
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy.
    Chen X; Sun S; Bai N; Han K; Liu Q; Yao S; Tang H; Zhang C; Lu Z; Huang Q; Zhao G; Xu Y; Chen T; Xie X; Liu Y
    Radiother Oncol; 2021 Jul; 160():175-184. PubMed ID: 33961914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating Automatic Segmentation for Swallowing-Related Organs for Head and Neck Cancer.
    Li Y; Rao S; Chen W; Azghadi SF; Nguyen KNB; Moran A; Usera BM; Dyer BA; Shang L; Chen Q; Rong Y
    Technol Cancer Res Treat; 2022; 21():15330338221105724. PubMed ID: 35790457
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.
    Wong J; Fong A; McVicar N; Smith S; Giambattista J; Wells D; Kolbeck C; Giambattista J; Gondara L; Alexander A
    Radiother Oncol; 2020 Mar; 144():152-158. PubMed ID: 31812930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer.
    Hoang Duc AK; Eminowicz G; Mendes R; Wong SL; McClelland J; Modat M; Cardoso MJ; Mendelson AF; Veiga C; Kadir T; D'Souza D; Ourselin S
    Med Phys; 2015 Sep; 42(9):5027-34. PubMed ID: 26328953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region.
    Kieselmann JP; Kamerling CP; Burgos N; Menten MJ; Fuller CD; Nill S; Cardoso MJ; Oelfke U
    Phys Med Biol; 2018 Jul; 63(14):145007. PubMed ID: 29882749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.