These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31653834)

  • 1. DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering.
    Milanese C; Bombardieri CR; Sepe S; Barnhoorn S; Payán-Goméz C; Caruso D; Audano M; Pedretti S; Vermeij WP; Brandt RMC; Gyenis A; Wamelink MM; de Wit AS; Janssens RC; Leen R; van Kuilenburg ABP; Mitro N; Hoeijmakers JHJ; Mastroberardino PG
    Nat Commun; 2019 Oct; 10(1):4887. PubMed ID: 31653834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G.
    Cooper PK; Nouspikel T; Clarkson SG; Leadon SA
    Science; 1997 Feb; 275(5302):990-3. PubMed ID: 9020084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome.
    Sarker AH; Tsutakawa SE; Kostek S; Ng C; Shin DS; Peris M; Campeau E; Tainer JA; Nogales E; Cooper PK
    Mol Cell; 2005 Oct; 20(2):187-98. PubMed ID: 16246722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.
    Vermeij WP; Dollé ME; Reiling E; Jaarsma D; Payan-Gomez C; Bombardieri CR; Wu H; Roks AJ; Botter SM; van der Eerden BC; Youssef SA; Kuiper RV; Nagarajah B; van Oostrom CT; Brandt RM; Barnhoorn S; Imholz S; Pennings JL; de Bruin A; Gyenis Á; Pothof J; Vijg J; van Steeg H; Hoeijmakers JH
    Nature; 2016 Sep; 537(7620):427-431. PubMed ID: 27556946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability.
    Trego KS; Groesser T; Davalos AR; Parplys AC; Zhao W; Nelson MR; Hlaing A; Shih B; Rydberg B; Pluth JM; Tsai MS; Hoeijmakers JHJ; Sung P; Wiese C; Campisi J; Cooper PK
    Mol Cell; 2016 Feb; 61(4):535-546. PubMed ID: 26833090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of three XPG-defective patients identifies three missense mutations that impair repair and transcription.
    Schäfer A; Schubert S; Gratchev A; Seebode C; Apel A; Laspe P; Hofmann L; Ohlenbusch A; Mori T; Kobayashi N; Schürer A; Schön MP; Emmert S
    J Invest Dermatol; 2013 Jul; 133(7):1841-9. PubMed ID: 23370536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome.
    Le Page F; Kwoh EE; Avrutskaya A; Gentil A; Leadon SA; Sarasin A; Cooper PK
    Cell; 2000 Apr; 101(2):159-71. PubMed ID: 10786832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability.
    Sollier J; Stork CT; García-Rubio ML; Paulsen RD; Aguilera A; Cimprich KA
    Mol Cell; 2014 Dec; 56(6):777-85. PubMed ID: 25435140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response.
    Krüger A; Grüning NM; Wamelink MM; Kerick M; Kirpy A; Parkhomchuk D; Bluemlein K; Schweiger MR; Soldatov A; Lehrach H; Jakobs C; Ralser M
    Antioxid Redox Signal; 2011 Jul; 15(2):311-24. PubMed ID: 21348809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Cross-talk between DNA repair and transcription: molecular mechanism and disorders].
    Ito S; Ando D; Tanaka K
    Tanpakushitsu Kakusan Koso; 2007 Nov; 52(14):1823-31. PubMed ID: 18018633
    [No Abstract]   [Full Text] [Related]  

  • 11. New insights for understanding the transcription-coupled repair pathway.
    Sarasin A; Stary A
    DNA Repair (Amst); 2007 Feb; 6(2):265-9. PubMed ID: 17194629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel XPG (ERCC5) mutations affect DNA repair and cell survival after ultraviolet but not oxidative stress.
    Soltys DT; Rocha CR; Lerner LK; de Souza TA; Munford V; Cabral F; Nardo T; Stefanini M; Sarasin A; Cabral-Neto JB; Menck CF
    Hum Mutat; 2013 Mar; 34(3):481-9. PubMed ID: 23255472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irofulven cytotoxicity depends on transcription-coupled nucleotide excision repair and is correlated with XPG expression in solid tumor cells.
    Koeppel F; Poindessous V; Lazar V; Raymond E; Sarasin A; Larsen AK
    Clin Cancer Res; 2004 Aug; 10(16):5604-13. PubMed ID: 15328203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both genetic and dietary factors underlie individual differences in DNA damage levels and DNA repair capacity.
    Slyskova J; Lorenzo Y; Karlsen A; Carlsen MH; Novosadova V; Blomhoff R; Vodicka P; Collins AR
    DNA Repair (Amst); 2014 Apr; 16():66-73. PubMed ID: 24674629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The metabolic and molecular bases of Cockayne syndrome].
    Flores-Alvarado LJ; Ramirez-Garcia SA; Núñez-Reveles NY
    Rev Invest Clin; 2010; 62(5):480-90. PubMed ID: 21416736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay of DNA repair with transcription: from structures to mechanisms.
    Deaconescu AM; Artsimovitch I; Grigorieff N
    Trends Biochem Sci; 2012 Dec; 37(12):543-52. PubMed ID: 23084398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mouse model for the DNA repair/basal transcription disorder trichothiodystrophy reveals cancer predisposition.
    de Boer J; van Steeg H; Berg RJ; Garssen J; de Wit J; van Oostrum CT; Beems RB; van der Horst GT; van Kreijl CF; de Gruijl FR; Bootsma D; Hoeijmakers JH; Weeda G
    Cancer Res; 1999 Jul; 59(14):3489-94. PubMed ID: 10416615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base excision repair of oxidative DNA damage activated by XPG protein.
    Klungland A; Höss M; Gunz D; Constantinou A; Clarkson SG; Doetsch PW; Bolton PH; Wood RD; Lindahl T
    Mol Cell; 1999 Jan; 3(1):33-42. PubMed ID: 10024877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma.
    Lucarelli G; Galleggiante V; Rutigliano M; Sanguedolce F; Cagiano S; Bufo P; Lastilla G; Maiorano E; Ribatti D; Giglio A; Serino G; Vavallo A; Bettocchi C; Selvaggi FP; Battaglia M; Ditonno P
    Oncotarget; 2015 May; 6(15):13371-86. PubMed ID: 25945836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide excision repair and its interplay with transcription.
    van Hoffen A; Balajee AS; van Zeeland AA; Mullenders LH
    Toxicology; 2003 Nov; 193(1-2):79-90. PubMed ID: 14599769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.