These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31653917)

  • 21. Evidence for trends in UK flooding.
    Robson AJ
    Philos Trans A Math Phys Eng Sci; 2002 Jul; 360(1796):1327-43. PubMed ID: 12804252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The potential effects of climate change on air quality across the conterminous U.S. at 2030 under three Representative Concentration Pathways.
    Nolte CG; Spero TL; Bowden JH; Mallard MS; Dolwick PD
    Atmos Chem Phys; 2018; 18(20):15471-15489. PubMed ID: 30972111
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Projection of Future Extreme Precipitation and Flood Changes of the Jinsha River Basin in China Based on CMIP5 Climate Models.
    Yuan Z; Xu J; Wang Y
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30413030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climate change-induced variations in future extreme precipitation intensity-duration-frequency in flood-prone city of Adama, central Ethiopia.
    Bulti DT; Abebe BG; Biru Z
    Environ Monit Assess; 2021 Nov; 193(12):784. PubMed ID: 34755254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of future flash flood inundations in coastal regions under climate change scenarios-A case study of Hadahe River basin in northeastern China.
    Zhang Y; Wang Y; Chen Y; Liang F; Liu H
    Sci Total Environ; 2019 Nov; 693():133550. PubMed ID: 31362226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Social-media and newspaper reports reveal large-scale meteorological drivers of floods on Sumatra.
    Baranowski DB; Flatau MK; Flatau PJ; Karnawati D; Barabasz K; Labuz M; Latos B; Schmidt JM; Paski JAI; Marzuki
    Nat Commun; 2020 May; 11(1):2503. PubMed ID: 32427906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An uncertainty-based framework to quantifying climate change impacts on coastal flood vulnerability: case study of New York City.
    Zahmatkesh Z; Karamouz M
    Environ Monit Assess; 2017 Oct; 189(11):567. PubMed ID: 29043571
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of urban storm drainage network under changing climate scenarios: Flood mitigation in Indian coastal city.
    Andimuthu R; Kandasamy P; Mudgal BV; Jeganathan A; Balu A; Sankar G
    Sci Rep; 2019 May; 9(1):7783. PubMed ID: 31123273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recurring flood distribution patterns related to short-term Holocene climatic variability.
    Benito G; Macklin MG; Panin A; Rossato S; Fontana A; Jones AF; Machado MJ; Matlakhova E; Mozzi P; Zielhofer C
    Sci Rep; 2015 Nov; 5():16398. PubMed ID: 26549043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Climatic control of Mississippi River flood hazard amplified by river engineering.
    Munoz SE; Giosan L; Therrell MD; Remo JWF; Shen Z; Sullivan RM; Wiman C; O'Donnell M; Donnelly JP
    Nature; 2018 Apr; 556(7699):95-98. PubMed ID: 29620734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Joint Risk of Rainfall and Storm Surges during Typhoons in a Coastal City of Haidian Island, China.
    Xu H; Xu K; Bin L; Lian J; Ma C
    Int J Environ Res Public Health; 2018 Jun; 15(7):. PubMed ID: 29966359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Impact of changes in land use and climate on the runoff in Liuxihe Watershed based on SWAT model].
    Yuan YZ; Zhang ZD; Meng JH
    Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):989-98. PubMed ID: 26259438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A scalable flood-resilience-index for measuring climate change adaptation: Munich city.
    Leandro J; Chen KF; Wood RR; Ludwig R
    Water Res; 2020 Apr; 173():115502. PubMed ID: 32028251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flood management under climatic variability and its future perspective in Japan.
    Ikeda T; Yoshitani J; Terakawa A
    Water Sci Technol; 2005; 51(5):133-40. PubMed ID: 15918366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flood protection diversification to reduce probabilities of extreme losses.
    Zhou Q; Lambert JH; Karvetski CW; Keisler JM; Linkov I
    Risk Anal; 2012 Nov; 32(11):1873-87. PubMed ID: 22817779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bivariate analysis of floods in climate impact assessments.
    Brunner MI; Sikorska AE; Seibert J
    Sci Total Environ; 2018 Mar; 616-617():1392-1403. PubMed ID: 29111248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation.
    Zhou Q; Leng G; Su J; Ren Y
    Sci Total Environ; 2019 Mar; 658():24-33. PubMed ID: 30572212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comprehensive approach to understanding flood risk drivers at the municipal level.
    Santos PP; Pereira S; Zêzere JL; Tavares AO; Reis E; Garcia RAC; Oliveira SC
    J Environ Manage; 2020 Apr; 260():110127. PubMed ID: 32090826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Floods and rivers: a circular causality perspective.
    Sofia G; Nikolopoulos EI
    Sci Rep; 2020 Mar; 10(1):5175. PubMed ID: 32198355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data.
    Muis S; Güneralp B; Jongman B; Aerts JC; Ward PJ
    Sci Total Environ; 2015 Dec; 538():445-57. PubMed ID: 26318682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.