These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31654438)

  • 1. NAGbinder: An approach for identifying N-acetylglucosamine interacting residues of a protein from its primary sequence.
    Patiyal S; Agrawal P; Kumar V; Dhall A; Kumar R; Mishra G; Raghava GPS
    Protein Sci; 2020 Jan; 29(1):201-210. PubMed ID: 31654438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAMbinder: A Web Server for Predicting S-Adenosyl-L-Methionine Binding Residues of a Protein From Its Amino Acid Sequence.
    Agrawal P; Mishra G; Raghava GPS
    Front Pharmacol; 2019; 10():1690. PubMed ID: 32082172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of GTP interacting residues, dipeptides and tripeptides in a protein from its evolutionary information.
    Chauhan JS; Mishra NK; Raghava GP
    BMC Bioinformatics; 2010 Jun; 11():301. PubMed ID: 20525281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of NAD interacting residues in proteins.
    Ansari HR; Raghava GP
    BMC Bioinformatics; 2010 Mar; 11():160. PubMed ID: 20353553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of mannose interacting residues using local composition.
    Agarwal S; Mishra NK; Singh H; Raghava GP
    PLoS One; 2011; 6(9):e24039. PubMed ID: 21931639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning-based method for the prediction of DNA interacting residues in a protein.
    Patiyal S; Dhall A; Raghava GPS
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35943134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AntiCP 2.0: an updated model for predicting anticancer peptides.
    Agrawal P; Bhagat D; Mahalwal M; Sharma N; Raghava GPS
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32770192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of ATP binding residues of a protein from its primary sequence.
    Chauhan JS; Mishra NK; Raghava GP
    BMC Bioinformatics; 2009 Dec; 10():434. PubMed ID: 20021687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of RNA-interacting residues in a protein using CNN and evolutionary profile.
    Patiyal S; Dhall A; Bajaj K; Sahu H; Raghava GPS
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36516298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of FAD interacting residues in a protein from its primary sequence using evolutionary information.
    Mishra NK; Raghava GP
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S48. PubMed ID: 20122222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information.
    Panwar B; Gupta S; Raghava GP
    BMC Bioinformatics; 2013 Feb; 14():44. PubMed ID: 23387468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GlycoPP: a webserver for prediction of N- and O-glycosites in prokaryotic protein sequences.
    Chauhan JS; Bhat AH; Raghava GP; Rao A
    PLoS One; 2012; 7(7):e40155. PubMed ID: 22808107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NeuroPIpred: a tool to predict, design and scan insect neuropeptides.
    Agrawal P; Kumar S; Singh A; Raghava GPS; Singh IK
    Sci Rep; 2019 Mar; 9(1):5129. PubMed ID: 30914676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partner-aware prediction of interacting residues in protein-protein complexes from sequence data.
    Ahmad S; Mizuguchi K
    PLoS One; 2011; 6(12):e29104. PubMed ID: 22194998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CoABind: a novel algorithm for Coenzyme A (CoA)- and CoA derivatives-binding residues prediction.
    Meng Q; Peng Z; Yang J
    Bioinformatics; 2018 Aug; 34(15):2598-2604. PubMed ID: 29547921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-based prediction of DNA-binding residues in proteins with conservation and correlation information.
    Ma X; Guo J; Liu HD; Xie JM; Sun X
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1766-75. PubMed ID: 22868682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A random forest model for predicting exosomal proteins using evolutionary information and motifs.
    Arora A; Patiyal S; Sharma N; Devi NL; Kaur D; Raghava GPS
    Proteomics; 2024 Mar; 24(6):e2300231. PubMed ID: 37525341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Sequence-Based Prediction of Protein-Peptide Binding Residues by Introducing Intrinsic Disorder and a Consensus Method.
    Zhao Z; Peng Z; Yang J
    J Chem Inf Model; 2018 Jul; 58(7):1459-1468. PubMed ID: 29895149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of FMN-binding residues with three-dimensional probability distributions of interacting atoms on protein surfaces.
    Mahalingam R; Peng HP; Yang AS
    J Theor Biol; 2014 Feb; 343():154-61. PubMed ID: 24211525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.