These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31654852)

  • 1. WRNIP1 Protects Reversed DNA Replication Forks from SLX4-Dependent Nucleolytic Cleavage.
    Porebski B; Wild S; Kummer S; Scaglione S; Gaillard PL; Gari K
    iScience; 2019 Nov; 21():31-41. PubMed ID: 31654852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WRNIP1 protects stalled forks from degradation and promotes fork restart after replication stress.
    Leuzzi G; Marabitti V; Pichierri P; Franchitto A
    EMBO J; 2016 Jul; 35(13):1437-51. PubMed ID: 27242363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WRNIP1: A new guardian of genome integrity at stalled replication forks.
    Leuzzi G; Marabitti V; Pichierri P; Franchitto A
    Mol Cell Oncol; 2016; 3(5):e1215777. PubMed ID: 27857978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells.
    Lemaçon D; Jackson J; Quinet A; Brickner JR; Li S; Yazinski S; You Z; Ira G; Zou L; Mosammaparast N; Vindigni A
    Nat Commun; 2017 Oct; 8(1):860. PubMed ID: 29038425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear myosin VI maintains replication fork stability.
    Shi J; Hauschulte K; Mikicic I; Maharjan S; Arz V; Strauch T; Heidelberger JB; Schaefer JV; Dreier B; Plückthun A; Beli P; Ulrich HD; Wollscheid HP
    Nat Commun; 2023 Jun; 14(1):3787. PubMed ID: 37355687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication fork reversal triggers fork degradation in BRCA2-defective cells.
    Mijic S; Zellweger R; Chappidi N; Berti M; Jacobs K; Mutreja K; Ursich S; Ray Chaudhuri A; Nussenzweig A; Janscak P; Lopes M
    Nat Commun; 2017 Oct; 8(1):859. PubMed ID: 29038466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replication Fork Reversal and Protection.
    Qiu S; Jiang G; Cao L; Huang J
    Front Cell Dev Biol; 2021; 9():670392. PubMed ID: 34041245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments.
    Kolinjivadi AM; Sannino V; De Antoni A; Zadorozhny K; Kilkenny M; Técher H; Baldi G; Shen R; Ciccia A; Pellegrini L; Krejci L; Costanzo V
    Mol Cell; 2017 Sep; 67(5):867-881.e7. PubMed ID: 28757209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The emerging determinants of replication fork stability.
    Thakar T; Moldovan GL
    Nucleic Acids Res; 2021 Jul; 49(13):7224-7238. PubMed ID: 33978751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DCAF14 promotes stalled fork stability to maintain genome integrity.
    Townsend A; Lora G; Engel J; Tirado-Class N; Dungrawala H
    Cell Rep; 2021 Jan; 34(4):108669. PubMed ID: 33503431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Wrnip1 is localized in replication factories in a ubiquitin-binding zinc finger-dependent manner.
    Crosetto N; Bienko M; Hibbert RG; Perica T; Ambrogio C; Kensche T; Hofmann K; Sixma TK; Dikic I
    J Biol Chem; 2008 Dec; 283(50):35173-85. PubMed ID: 18842586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CtIP-Mediated Fork Protection Synergizes with BRCA1 to Suppress Genomic Instability upon DNA Replication Stress.
    Przetocka S; Porro A; Bolck HA; Walker C; Lezaja A; Trenner A; von Aesch C; Himmels SF; D'Andrea AD; Ceccaldi R; Altmeyer M; Sartori AA
    Mol Cell; 2018 Nov; 72(3):568-582.e6. PubMed ID: 30344097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleolytic processing of aberrant replication intermediates by an Exo1-Dna2-Sae2 axis counteracts fork collapse-driven chromosome instability.
    Colosio A; Frattini C; Pellicanò G; Villa-Hernández S; Bermejo R
    Nucleic Acids Res; 2016 Dec; 44(22):10676-10690. PubMed ID: 27672038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two replication fork remodeling pathways generate nuclease substrates for distinct fork protection factors.
    Liu W; Krishnamoorthy A; Zhao R; Cortez D
    Sci Adv; 2020 Nov; 6(46):. PubMed ID: 33188024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25773776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WRNIP1 prevents transcription-associated genomic instability.
    Valenzisi P; Marabitti V; Pichierri P; Franchitto A
    Elife; 2024 Mar; 12():. PubMed ID: 38488661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Checkpoint Defects Elicit a WRNIP1-Mediated Response to Counteract R-Loop-Associated Genomic Instability.
    Marabitti V; Lillo G; Malacaria E; Palermo V; Pichierri P; Franchitto A
    Cancers (Basel); 2020 Feb; 12(2):. PubMed ID: 32046194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MRNIP is a replication fork protection factor.
    Bennett LG; Wilkie AM; Antonopoulou E; Ceppi I; Sanchez A; Vernon EG; Gamble A; Myers KN; Collis SJ; Cejka P; Staples CJ
    Sci Adv; 2020 Jul; 6(28):eaba5974. PubMed ID: 32832601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tough row to hoe: when replication forks encounter DNA damage.
    Patel DR; Weiss RS
    Biochem Soc Trans; 2018 Dec; 46(6):1643-1651. PubMed ID: 30514768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.