These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31654852)

  • 21. Roles of SDE2 and TIMELESS at active and stalled DNA replication forks.
    Lo N; Rageul J; Kim H
    Mol Cell Oncol; 2021; 8(1):1855053. PubMed ID: 33553608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acetyl transferase EP300 deficiency leads to chronic replication stress mediated by defective fork protection at stalled replication forks.
    Barreto-Galvez A; Niljikar M; Gagliardi J; Zhang R; Kumar V; Juruwala A; Pradeep A; Shaikh A; Tiwari P; Sharma K; Gerhardt J; Cao J; Kataoka K; Durbin A; Qi J; Ye BH; Madireddy A
    bioRxiv; 2023 Apr; ():. PubMed ID: 37163075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slx1-Slx4 is a second structure-specific endonuclease functionally redundant with Sgs1-Top3.
    Fricke WM; Brill SJ
    Genes Dev; 2003 Jul; 17(14):1768-78. PubMed ID: 12832395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A game of substrates: replication fork remodeling and its roles in genome stability and chemo-resistance.
    Sidorova J
    Cell Stress; 2017 Dec; 1(3):115-133. PubMed ID: 29355244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Replication fork uncoupling causes nascent strand degradation and fork reversal.
    Kavlashvili T; Liu W; Mohamed TM; Cortez D; Dewar JM
    Nat Struct Mol Biol; 2023 Jan; 30(1):115-124. PubMed ID: 36593312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts.
    Pasero P; Vindigni A
    Annu Rev Genet; 2017 Nov; 51():477-499. PubMed ID: 29178820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of WRNIP1 in genome maintenance.
    Yoshimura A; Seki M; Enomoto T
    Cell Cycle; 2017 Mar; 16(6):515-521. PubMed ID: 28118071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physical and functional interaction between WRNIP1 and RAD18.
    Yoshimura A; Seki M; Kanamori M; Tateishi S; Tsurimoto T; Tada S; Enomoto T
    Genes Genet Syst; 2009 Apr; 84(2):171-8. PubMed ID: 19556710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart.
    Somyajit K; Saxena S; Babu S; Mishra A; Nagaraju G
    Nucleic Acids Res; 2015 Nov; 43(20):9835-55. PubMed ID: 26354865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rep and UvrD Antagonize One Another at Stalled Replication Forks and This Is Exacerbated by SSB.
    Liu X; Seet JX; Shi Y; Bianco PR
    ACS Omega; 2019 Mar; 4(3):5180-5196. PubMed ID: 30949615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation.
    McGlynn P; Lloyd RG
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8227-34. PubMed ID: 11459957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RADX Modulates RAD51 Activity to Control Replication Fork Protection.
    Bhat KP; Krishnamoorthy A; Dungrawala H; Garcin EB; Modesti M; Cortez D
    Cell Rep; 2018 Jul; 24(3):538-545. PubMed ID: 30021152
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stalled replication forks: making ends meet for recognition and stabilization.
    Masai H; Tanaka T; Kohda D
    Bioessays; 2010 Aug; 32(8):687-97. PubMed ID: 20658707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FBH1 Catalyzes Regression of Stalled Replication Forks.
    Fugger K; Mistrik M; Neelsen KJ; Yao Q; Zellweger R; Kousholt AN; Haahr P; Chu WK; Bartek J; Lopes M; Hickson ID; Sørensen CS
    Cell Rep; 2015 Mar; 10(10):1749-1757. PubMed ID: 25772361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RAD51 and mitotic function of mus81 are essential for recovery from low-dose of camptothecin in the absence of the WRN exonuclease.
    Aiello FA; Palma A; Malacaria E; Zheng L; Campbell JL; Shen B; Franchitto A; Pichierri P
    Nucleic Acids Res; 2019 Jul; 47(13):6796-6810. PubMed ID: 31114910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinct roles of structure-specific endonucleases EEPD1 and Metnase in replication stress responses.
    Sharma N; Speed MC; Allen CP; Maranon DG; Williamson E; Singh S; Hromas R; Nickoloff JA
    NAR Cancer; 2020 Jun; 2(2):zcaa008. PubMed ID: 32743552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A double-ring of human RAD52 remodels replication forks restricting fork reversal.
    Honda M; Razzaghi M; Gaur P; Malacaria E; Marozzi G; Biagi LD; Aiello FA; Paintsil EA; Stanfield AJ; Deppe BJ; Gakhar L; Schnicker NJ; Ashley Spies M; Pichierri P; Spies M
    bioRxiv; 2024 Sep; ():. PubMed ID: 38014173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation.
    Rondinelli B; Gogola E; Yücel H; Duarte AA; van de Ven M; van der Sluijs R; Konstantinopoulos PA; Jonkers J; Ceccaldi R; Rottenberg S; D'Andrea AD
    Nat Cell Biol; 2017 Nov; 19(11):1371-1378. PubMed ID: 29035360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unprotected Replication Forks Are Converted into Mitotic Sister Chromatid Bridges.
    Ait Saada A; Teixeira-Silva A; Iraqui I; Costes A; Hardy J; Paoletti G; Fréon K; Lambert SAE
    Mol Cell; 2017 May; 66(3):398-410.e4. PubMed ID: 28475874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active Control of Repetitive Structural Transitions between Replication Forks and Holliday Junctions by Werner Syndrome Helicase.
    Shin S; Lee J; Yoo S; Kulikowicz T; Bohr VA; Ahn B; Hohng S
    Structure; 2016 Aug; 24(8):1292-1300. PubMed ID: 27427477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.