These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 31654857)

  • 41. Fungi as Part of the Microbiota and Interactions with Intestinal Bacteria.
    Kapitan M; Niemiec MJ; Steimle A; Frick JS; Jacobsen ID
    Curr Top Microbiol Immunol; 2019; 422():265-301. PubMed ID: 30062595
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome engineering of the human gut microbiome.
    Zheng L; Shen J; Chen R; Hu Y; Zhao W; Leung EL; Dai L
    J Genet Genomics; 2024 May; 51(5):479-491. PubMed ID: 38218395
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metatranscriptomic analysis to define the Secrebiome, and 16S rRNA profiling of the gut microbiome in obesity and metabolic syndrome of Mexican children.
    Gallardo-Becerra L; Cornejo-Granados F; García-López R; Valdez-Lara A; Bikel S; Canizales-Quinteros S; López-Contreras BE; Mendoza-Vargas A; Nielsen H; Ochoa-Leyva A
    Microb Cell Fact; 2020 Mar; 19(1):61. PubMed ID: 32143621
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The honey bee gut microbiota: strategies for study and characterization.
    Romero S; Nastasa A; Chapman A; Kwong WK; Foster LJ
    Insect Mol Biol; 2019 Aug; 28(4):455-472. PubMed ID: 30652367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease.
    Becattini S; Taur Y; Pamer EG
    Trends Mol Med; 2016 Jun; 22(6):458-478. PubMed ID: 27178527
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interaction between Microbes and Host Intestinal Health: Modulation by Dietary Nutrients and Gut-Brain-Endocrine-Immune Axis.
    Chen J; Li Y; Tian Y; Huang C; Li D; Zhong Q; Ma X
    Curr Protein Pept Sci; 2015; 16(7):592-603. PubMed ID: 26122779
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.
    Xiong W; Abraham PE; Li Z; Pan C; Hettich RL
    Proteomics; 2015 Oct; 15(20):3424-38. PubMed ID: 25914197
    [TBL] [Abstract][Full Text] [Related]  

  • 48.
    Thiergart T; Zgadzaj R; Bozsóki Z; Garrido-Oter R; Radutoiu S; Schulze-Lefert P
    mBio; 2019 Oct; 10(5):. PubMed ID: 31594815
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Initial Gut Microbial Composition as a Key Factor Driving Host Response to Antibiotic Treatment, as Exemplified by the Presence or Absence of Commensal Escherichia coli.
    Ju T; Shoblak Y; Gao Y; Yang K; Fouhse J; Finlay BB; So YW; Stothard P; Willing BP
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28667114
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The gut microbiota and inflammatory bowel disease.
    Goto Y; Kurashima Y; Kiyono H
    Curr Opin Rheumatol; 2015 Jul; 27(4):388-96. PubMed ID: 26002031
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular Insights into Antimicrobial Resistance Traits of Commensal Human Gut Microbiota.
    Bag S; Ghosh TS; Banerjee S; Mehta O; Verma J; Dayal M; Desigamani A; Kumar P; Saha B; Kedia S; Ahuja V; Ramamurthy T; Das B
    Microb Ecol; 2019 Feb; 77(2):546-557. PubMed ID: 30009332
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn's remission patients despite temporal variations in microbial taxa, genomes, and proteomes.
    Blakeley-Ruiz JA; Erickson AR; Cantarel BL; Xiong W; Adams R; Jansson JK; Fraser CM; Hettich RL
    Microbiome; 2019 Feb; 7(1):18. PubMed ID: 30744677
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gut microbiome in chronic kidney disease: challenges and opportunities.
    Nallu A; Sharma S; Ramezani A; Muralidharan J; Raj D
    Transl Res; 2017 Jan; 179():24-37. PubMed ID: 27187743
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Colliding and interacting microbiomes and microbial communities - consequences for human health.
    Mills S; Ross RP
    Environ Microbiol; 2021 Dec; 23(12):7341-7354. PubMed ID: 34390616
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Symbiotic symphony: Understanding host-microbiota dialogues in a spatial context.
    Chatterjee S; Leach ST; Lui K; Mishra A
    Semin Cell Dev Biol; 2024; 161-162():22-30. PubMed ID: 38564842
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phylosymbiosis across Deeply Diverging Lineages of Omnivorous Cockroaches (Order Blattodea).
    Tinker KA; Ottesen EA
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31953337
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The human gut microbiome as source of innovation for health: Which physiological and therapeutic outcomes could we expect?
    Doré J; Multon MC; Béhier JM;
    Therapie; 2017 Feb; 72(1):21-38. PubMed ID: 28131442
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterizing symbiont inheritance during host-microbiota evolution: Application to the great apes gut microbiota.
    Perez-Lamarque B; Morlon H
    Mol Ecol Resour; 2019 Nov; 19(6):1659-1671. PubMed ID: 31325911
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Circadian Clock as an Essential Molecular Link Between Host Physiology and Microorganisms.
    Murakami M; Tognini P
    Front Cell Infect Microbiol; 2019; 9():469. PubMed ID: 32039048
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids.
    Fu J; Bonder MJ; Cenit MC; Tigchelaar EF; Maatman A; Dekens JA; Brandsma E; Marczynska J; Imhann F; Weersma RK; Franke L; Poon TW; Xavier RJ; Gevers D; Hofker MH; Wijmenga C; Zhernakova A
    Circ Res; 2015 Oct; 117(9):817-24. PubMed ID: 26358192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.