BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31655274)

  • 1. Machine learning and bioinformatics models to identify gene expression patterns of ovarian cancer associated with disease progression and mortality.
    Hossain MA; Saiful Islam SM; Quinn JMW; Huq F; Moni MA
    J Biomed Inform; 2019 Dec; 100():103313. PubMed ID: 31655274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prognostic values and prospective pathway signaling of MicroRNA-182 in ovarian cancer: a study based on gene expression omnibus (GEO) and bioinformatics analysis.
    Li Y; Li L
    J Ovarian Res; 2019 Nov; 12(1):106. PubMed ID: 31703725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.
    Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y
    J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of key genes associated with polycystic ovary syndrome (PCOS) and ovarian cancer using an integrated bioinformatics analysis.
    Zou J; Li Y; Liao N; Liu J; Zhang Q; Luo M; Xiao J; Chen Y; Wang M; Chen K; Zeng J; Mo Z
    J Ovarian Res; 2022 Feb; 15(1):30. PubMed ID: 35227296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-validation of genes potentially associated with overall survival and drug resistance in ovarian cancer.
    Gao Y; Liu X; Li T; Wei L; Yang A; Lu Y; Zhang J; Li L; Wang S; Yin F
    Oncol Rep; 2017 May; 37(5):3084-3092. PubMed ID: 28350120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel risk score system for assessment of ovarian cancer based on co-expression network analysis and expression level of five lncRNAs.
    Zhao Q; Fan C
    BMC Med Genet; 2019 Jun; 20(1):103. PubMed ID: 31182053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RAD51AP1 promotes progression of ovarian cancer via TGF-β/Smad signalling pathway.
    Zhao H; Gao Y; Chen Q; Li J; Ren M; Zhao X; Yue W
    J Cell Mol Med; 2021 Feb; 25(4):1927-1938. PubMed ID: 33314567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct transcriptional programs stratify ovarian cancer cell lines into the five major histological subtypes.
    Barnes BM; Nelson L; Tighe A; Burghel GJ; Lin IH; Desai S; McGrail JC; Morgan RD; Taylor SS
    Genome Med; 2021 Sep; 13(1):140. PubMed ID: 34470661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment and validation of an RNA binding protein-associated prognostic model for ovarian cancer.
    He C; Huang F; Zhang K; Wei J; Hu K; Liang M
    J Ovarian Res; 2021 Feb; 14(1):27. PubMed ID: 33550985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of a SVM classifier to predict recurrence of ovarian cancer.
    Zhou J; Li L; Wang L; Li X; Xing H; Cheng L
    Mol Med Rep; 2018 Oct; 18(4):3589-3598. PubMed ID: 30106117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased expression of ALDH5A1 predicts prognosis in patients with ovarian cancer.
    Tian X; Han Y; Yu L; Luo B; Hu Z; Li X; Yang Z; Wang X; Huang W; Wang H; Zhang Q; Ma D
    Cancer Biol Ther; 2017 Apr; 18(4):245-251. PubMed ID: 28346042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of ABC gene profiles with time to progression and resistance in ovarian cancer revealed by bioinformatics analyses.
    Seborova K; Vaclavikova R; Soucek P; Elsnerova K; Bartakova A; Cernaj P; Bouda J; Rob L; Hruda M; Dvorak P
    Cancer Med; 2019 Feb; 8(2):606-616. PubMed ID: 30672151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatics analysis to screen the key prognostic genes in ovarian cancer.
    Li L; Cai S; Liu S; Feng H; Zhang J
    J Ovarian Res; 2017 Apr; 10(1):27. PubMed ID: 28407786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifactor assessment of ovarian cancer reveals immunologically interpretable molecular subtypes with distinct prognoses.
    Guo Y; Li S; Li C; Wang L; Ning W
    Front Immunol; 2023; 14():1326018. PubMed ID: 38143770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of immune microenvironment subtypes that predicted the prognosis of patients with ovarian cancer.
    Wang X; Li X; Wang X
    J Cell Mol Med; 2021 Apr; 25(8):4053-4061. PubMed ID: 33675171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis.
    Feng H; Gu ZY; Li Q; Liu QH; Yang XY; Zhang JJ
    J Ovarian Res; 2019 Apr; 12(1):35. PubMed ID: 31010415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycosylation-Related Genes Predict the Prognosis and Immune Fraction of Ovarian Cancer Patients Based on Weighted Gene Coexpression Network Analysis (WGCNA) and Machine Learning.
    Zhao C; Xiong K; Zhao F; Adam A; Li X
    Oxid Med Cell Longev; 2022; 2022():3665617. PubMed ID: 35281472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling and bioinformatics analyses reveal differential circular RNA expression in ovarian cancer.
    Wang J; Wu A; Yang B; Zhu X; Teng Y; Ai Z
    Gene; 2020 Jan; 724():144150. PubMed ID: 31589961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide DNA copy number profiling and bioinformatics analysis of ovarian cancer reveals key genes and pathways associated with distinct invasive/migratory capabilities.
    Liu G; Ruan G; Huang M; Chen L; Sun P
    Aging (Albany NY); 2020 Jan; 12(1):178-192. PubMed ID: 31895688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A random forest classifier predicts recurrence risk in patients with ovarian cancer.
    Cheng L; Li L; Wang L; Li X; Xing H; Zhou J
    Mol Med Rep; 2018 Sep; 18(3):3289-3297. PubMed ID: 30066910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.